Advertisement

Microscopic Tunneling Model of Nb–AlN–NbN Josephson Flux-Flow Oscillator

  • D. R. Gulevich
  • L. V. Filippenko
  • V. P. Koshelets
Article
  • 7 Downloads

Abstract

Since the very first experimental realization of a Josephson flux-flow oscillator (FFO), its theoretical description has been limited by the phenomenological perturbed sine-Gordon equation (PSGE). While PSGE can qualitatively describe the topological excitations in Josephson junctions that are sine-Gordon solitons or fluxons, it is unable to capture essential physical phenomena of a realistic system such as the coupling between tunnel currents and electromagnetic radiation. Furthermore, PSGE neglects any dependence on energy gaps of superconductors and makes no distinction between symmetric and asymmetric junctions: those made of two identical or two different superconducting materials. It was not until recently when it became possible to calculate properties of FFO by taking into account information about energy gaps of superconductors (Gulevich et al. in Phys Rev B 96:024215, 2017). Such approach is based on the microscopic tunneling theory and has been shown to describe essential features of symmetric Nb–AlO\(_\mathrm{x}\)–Nb junctions. Here, we extend this approach to asymmetric Nb–AlN–NbN junctions and compare the calculated current–voltage characteristics to our experimental results.

Keywords

Microscopic tunneling theory Flux-flow oscillator Nb–AlN–NbN contacts Tunnel current amplitudes Josephson self-coupling 

Notes

Acknowledgements

The theoretical part of the work and numerical modeling are supported by the Russian Science Foundation under the Grant 18-12-00429. The experimental study is supported from the Grant No. 17-52-12051 of the Russian Foundation for Basic Research.

References

  1. 1.
    E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski, Josephson Junctions. History, Devices, and Applications (Pan Stanford Publishing Pte. Ltd., Singapore, 2017)Google Scholar
  2. 2.
    J. Clarke, A.I. Braginski, The SQUID Handbook Vol. I: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2004)CrossRefGoogle Scholar
  3. 3.
    J. Clarke, A.I. Braginski, The SQUID Handbook Vol. II: Applications of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2006)CrossRefGoogle Scholar
  4. 4.
    P. Seidel, Applied Superconductivity: Handbook on Devices and Applications, vol. 2 (Wiley-VCH, Weinheim, 2015)Google Scholar
  5. 5.
    S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, L.M. Johnson, M.A. Gouker, W.D. Oliver, Fabrication process and properties of fully-planarized deep-submicron Nb/Al–AlO\(_{\rm x}\)/Nb Josephson junctions for VLSI circuits. IEEE Trans. Appl. Supercond. 25, 1101312 (2015)Google Scholar
  6. 6.
    S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson et al., Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26, 1100110 (2016)Google Scholar
  7. 7.
    R. Harris, Phys. Rev. B 81, 134510 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M. Johnson et al., Nature 473, 194–198 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Zagoskin, Quantum Engineering: Theory and Design of Quantum Coherent Structures (Cambridge University Press, Cambridge, 2011)Google Scholar
  10. 10.
    J.R. Tucker, IEEE J. Quantum Electron. 15, 1234 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Tucker, M.J. Feldman, Rev. Mod. Phys. 57, 1055 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    A. Karpov, J. Blondell, M. Voss, K.H. Gundlach, Four photons sensitivity heterodyne detection of submillimeter radiation with superconducting tunnel junctions. IEEE Trans. Appl. Supercond. 5, 3304 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Baryshev et al., Astron. Astrophys. 577, A129 (2015)CrossRefGoogle Scholar
  14. 14.
    J.M. Rowell, M. Gurvitch, J. Geerk, Phys. Rev. B. 24, 2278 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    M. Gurvitch, W.A. Washington, H.A. Huggins, Appl. Phys. Lett. 42, 472 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    H.A. Huggins, M. Gurwitch, J. Appl. Phys. 57, 2103 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    T. Shiota, T. Imamura, S. Hasuo, Appl. Phys. Lett. 61, 1228 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    A.W. Kleinsasser, W.H. Mallison, R.E. Miller, IEEE Trans. Appl. Supercond. 5, 2318 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    J. Kawamura, D. Miller, J. Chen, J. Zmuidzinas, B. Bumble, H.G. Le Duc, J.A. Stern, Appl. Phys. Lett. 76, 2119 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    B. Bumble, H.G. LeDuc, J.A. Stern, K.G. Megerian, IEEE Trans. Appl. Supercond. 11, 76 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    N.N. Iosad, A.B. Ermakov, F.E. Meijer, B.D. Jackson, T.M. Klapwijk, Supercond. Sci. Technol. 15, 945 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    P.N. Dmitriev, I.L. Lapitskaya, L.V. Filippenko, A.B. Ermakov, S.V. Shitov, G.V. Prokopenko, S.A. Kovtonyuk, V.P. Koshelets, IEEE Trans. Appl. Supercond. 13, 107 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    MYu. Torgashin, V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, L.V. Filippenko, P.A. Yagoubov, IEEE Trans. Appl. Supercond. 17, 379 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A. Khudchenko, A.M. Baryshev, K. Rudakov, V. Koshelets, P. Dmitriev, R. Hesper, L. de Jong, IEEE Trans. Terahertz Sci. Technol. 6, 127 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    T. Nagatsuma, K. Enpuku, F. Irie, K. Yoshida, J. Appl. Phys. 54, 3302 (1983)ADSCrossRefGoogle Scholar
  26. 26.
    G. de Lange et al., Supercond. Sci. Technol. 23, 045016 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    V.P. Koshelets et al., IEEE Trans. Terahertz Sci. Technol. 5, 687 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    V.P. Koshelets, S.V. Shitov, A.V. Shchukin, L.V. Filippenko, J. Mygind, A.V. Ustinov, Phys. Rev. B 56, 5572 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    N.R. Werthamer, Phys. Rev. 147, 255 (1966)ADSCrossRefGoogle Scholar
  30. 30.
    A.I. Larkin, YuN Ovchinnikov, Sov. Phys. JETP 24, 1035 (1967)ADSGoogle Scholar
  31. 31.
    V.P. Koshelets, S.V. Shitov, L.V. Filippenko, A.M. Baryshev, W. Luinge, H. Golstein, H. van de Stadt, J.-R. Gao, T. de Graauw, IEEE Trans. Appl. Supercond. 7, 3589 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    V.P. Koshelets, S.V. Shitov, Supercond. Sci. Technol. 13, R53 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    O. Kiselev, M. Birk, A. Ermakov, L. Filippenko, H. Golstein, R. Hoogeveen, N. Kinev, B. van Kuik, A. de Lange, G. de Lange, P. Yagoubov, V. Koshelets, IEEE Trans. Appl. Supercond. 21, 612 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    M. Li et al., Phys. Rev. B. 86, 060505 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    C. Soriano, G. Costabile, R.D. Parmentier, Supercond. Sci. Technol. 9, 578 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    A.A. Golubov, B.A. Malomed, A.V. Ustinov, Phys. Rev. B 54, 3047 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    A.V. Ustinov, H. Kohlstedt, P. Henne, Phys. Rev. Lett. 77, 3617 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    A.P. Betenev, V.V. Kurin, Phys. Rev. B 56, 7855 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    M. Cirillo, N. Gronbech-Jensen, M.R. Samuelsen, M. Salerno, G.V. Rinati, Phys. Rev. B 58, 12377 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    M. Salerno, M.R. Samuelsen, Phys. Rev. B 59, 14653 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    M. Jaworski, Phys. Rev. B 60, 7484 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    M. Salerno, M.R. Samuelsen, A.V. Yulin, Phys. Rev. Lett. 86, 5397 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    A.L. Pankratov, Phys. Rev. B 65, 054504 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    A.L. Pankratov, Phys. Rev. B 66, 134526 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    A.S. Sobolev, A.L. Pankratov, J. Mygind, Physica C 435, 112 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    A.L. Pankratov, A.S. Sobolev, V.P. Koshelets, J. Mygind, Phys. Rev. B 75, 184516 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    A.L. Pankratov, V.L. Vaks, V.P. Koshelets, J. Appl. Phys. 102, 063912 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    M.M. Khapaev, M.Yu. Kupriyanov, J. Phys.: Conf. Ser. 129, 012037 (2008)Google Scholar
  49. 49.
    A.L. Pankratov, Phys. Rev. B 78, 024515 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    A.L. Pankratov et al., J. Phys.: Conf. Ser. 97, 012303 (2008)Google Scholar
  51. 51.
    M. Jaworski, Phys. Rev. B 81, 224517 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    E.A. Matrozova et al., J. Appl. Phys. 110, 053922 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    L.S. Revin, A.L. Pankratov, Phys. Rev. B 86, 054501 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    D.R. Gulevich, P.N. Dmitriev, V.P. Koshelets, F.V. Kusmartsev, Nanosyst. Phys. Chem. Math. 4, 507 (2013)Google Scholar
  55. 55.
    K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, New York, 1986)Google Scholar
  56. 56.
    D.R. Gulevich, V.P. Koshelets, F.V. Kusmartsev, Phys. Rev. B 96, 024215 (2017)ADSGoogle Scholar
  57. 57.
    Open source C library MiTMoJCo (Microscopic Tunneling Model for Josephson Contacts), https://github.com/drgulevich/mitmojco
  58. 58.
    D.R. Gulevich, MiTMoJCo: Microscopic Tunneling Model for Josephson Contacts, arXiv:1809.04706
  59. 59.
    M. Khapaev, IEEE Trans. Microw. Theory Tech. 49, 217 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    M.M. Khapaev, MYu. Kupriyanov, J. Phys.: Conf. Ser. 248, 012041 (2010)Google Scholar
  61. 61.
    M.M. Khapaev, MYu. Kupriyanov, Supercond. Sci. Technol. 28, 055013 (2015)CrossRefGoogle Scholar
  62. 62.
    E.H. Rhoderick, E.M. Wilson, Nature (London) 194, 1167 (1962)ADSCrossRefGoogle Scholar
  63. 63.
    R.E. Harris, Phys. Rev. B 11, 3329 (1975)ADSCrossRefGoogle Scholar
  64. 64.
    A.B. Zorin, I.O. Kulik, K.K. Likharev, J.R. Schrieffer, Sov. J. Low Temp. Phys. 5, 537 (1979)Google Scholar
  65. 65.
    D.K. Finnemore, T.F. Stromberg, C.A. Swenson, Phys. Rev. 149, 231 (1966)ADSCrossRefGoogle Scholar
  66. 66.
    A.A. Odintsov, V.K. Semenov, A.B. Zorin, IEEE Trans. Magn. 23, 763 (1987)ADSCrossRefGoogle Scholar
  67. 67.
    N. Grønbech-Jensen, S.A. Hattel, M.R. Samuelsen, Phys. Rev. B 45, 12457 (1992)ADSCrossRefGoogle Scholar
  68. 68.
    S.A. Hattel, N. Grønbech-Jensen, M.R. Samuelsen, Phys. Lett. A 178, 150 (1993)ADSCrossRefGoogle Scholar
  69. 69.
    G.S. Lee, IEEE Trans. Appl. Supercond. 1, 121 (1991)ADSCrossRefGoogle Scholar
  70. 70.
    G.S. Lee, A.T. Barfknecht, IEEE Trans. Appl. Supercond. 2, 67 (1992)ADSCrossRefGoogle Scholar
  71. 71.
    J.-G. Caputo, N. Flytzanis, M. Devoret, Phys. Rev. B 50, 6471 (1994)ADSCrossRefGoogle Scholar
  72. 72.
    R. Monaco, G. Costabile, N. Martucciello, J. Appl. Phys. 77, 2073 (1995)ADSCrossRefGoogle Scholar
  73. 73.
    N. Thyssen, A.V. Ustinov, H. Kohlstedt, S. Pagano, J.-G. Caputo, N. Flytzanis, IEEE Trans. Appl. Supercond. 5, 2965 (1995)ADSCrossRefGoogle Scholar
  74. 74.
    J.-G. Caputo, N. Flytzanis, E. Vavalis, Int. J. Mod. Phys. C 07, 191 (1996)ADSCrossRefGoogle Scholar
  75. 75.
    J.-G. Caputo, N. Flytzanis, V. Kurin, N. Lazarides, E. Vavalis, J. Appl. Phys. 85, 7291 (1999)ADSCrossRefGoogle Scholar
  76. 76.
    A. Franz, A. Wallraff, A.V. Ustinov, J. Appl. Phys. 89, 471 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    A. Benabdallah, J.-G. Caputo, J. Appl. Phys. 92, 3853 (2002)ADSCrossRefGoogle Scholar
  78. 78.
    D.R. Gulevich, F.V. Kusmartsev, Phys. Rev. Lett. 97, 017004 (2006)ADSCrossRefGoogle Scholar
  79. 79.
    D.R. Gulevich, F.V. Kusmartsev, Supercond. Sci. Tech. 20, S60 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    D.R. Gulevich, F.V. Kusmartsev, New J. Phys. 9, 59 (2007)ADSCrossRefGoogle Scholar
  81. 81.
    D.R. Gulevich, M. Gaifullin, O.E. Kusmartseva, F.V. Kusmartsev, K. Hirata, Physica C 468, 1903 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    D.R. Gulevich, V.P. Koshelets, F.V. Kusmartsev, Bridging the Terahertz gap for chaotic sources with superconducting junctions, arXiv:1709.04052

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. R. Gulevich
    • 1
  • L. V. Filippenko
    • 2
  • V. P. Koshelets
    • 2
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of ScienceMoscowRussia

Personalised recommendations