Advertisement

Multi-body Correlations in SU(3) Fermi Gases

  • H. Tajima
  • P. Naidon
Article
  • 13 Downloads

Abstract

We investigate strong-coupling effects in a three-component atomic Fermi gas. It is a promising candidate for simulating quantum chromodynamics, and furthermore, the emergence of various phenomena such as color superfluidity and Efimov effect is anticipated in this system. In this paper, we study the effects of two-body and three-body correlations by means of the many-body T-matrix approximation as well as the Skorniakov–Ter-Martirosian equation with medium corrections. We investigate the effects of finite temperature and chemical potential on the trimer binding energy at the superfluid critical point of the unitarity limit.

Keywords

Ultracold Fermi gas Superfluidity Efimov effect 

Notes

Acknowledgements

We thank Y. Nishida, T. Hatsuda, and G. Baym for useful discussions. H.T. was supported by a Grant-in-Aid for JSPS fellows (No. 17J03975). P.N. was supported by RIKEN Incentive Research Project. This work was partially supported by iTHEMS Program.

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    W. Hofstetter, J.I. Cirac, P. Zoller, E. Demler, M.D. Lukin, Phys. Rev. Lett. 89, 220407 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    J.K. Chin, D.E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu, W. Ketterle, Nature 443, 961 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    C. Gross, I. Bloch, Science 357, 995 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    A. Gezerlis, J. Carlson, Phys. Rev. C 70, 032801(R) (2008)ADSCrossRefGoogle Scholar
  7. 7.
    N. Navon, S. Nascimbéne, F. Chevy, C. Salomon, Science 328, 729 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M. Horikoshi, M. Koashi, H. Tajima, Y. Ohashi, M. Kuwata-Gonokami, Phys. Rev. X 7, 041004 (2017)Google Scholar
  9. 9.
    H. Tajima, P. van Wyk, R. Hanai, D. Kagamihara, D. Inotani, M. Horikoshi, Y. Ohashi, Phys. Rev. A 95, 043625 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    P. van Wyk, H. Tajima, D. Inotani, A. Ohnishi, Y. Ohashi, Phys. Rev. A 97, 013601 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74, 014001 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    L. He, M. Jin, P. Zhuang, Phys. Rev. A 74, 033604 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    T. Paananen, J.-P. Martikainen, P. Törmä, Phys. Rev. A 73, 053606 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    T. Ozawa, G. Baym, Phys. Rev. A 82, 063615 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S. Floerchinger, R. Schmidt, S. Moroz, C. Wetterich, Phys. Rev. A 79, 013603 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Nishida, Phys. Rev. Lett. 109, 240401 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kirk, M.M. Parish, Phys. Rev. A 96, 053614 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    T.B. Ottenstein, T. Lompe, M. Kohnen, A.N. Wenz, S. Jochim, Phys. Rev. Lett. 101, 203202 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    K.M. O’Hara, New J. Phys. 13, 065011 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    V. Efimov, Yad. Fiz. 12, 1080 (1970)Google Scholar
  23. 23.
    V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)Google Scholar
  24. 24.
    P. Naidon, M. Ueda, Phys. Rev. Lett. 103, 073203 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    P. Naidon, M. Ueda, C. R. Phys. 12, 13 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    P. Naidon, S. Endo, Rep. Prog. Phys. 80, 056001 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    J.R. Williams, E.L. Hazlett, J.H. Huckans, R.W. Stities, Y. Zhang, K. O’Hara, Phys. Rev. Lett. 103, 130404 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A.N. Wenz, T. Lompe, T.B. Ottenstein, F. Serwane, G. Zürn, S. Jochim, Phys. Rev. A 80, 040702(R) (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, M. Ueda, Phys. Rev. Lett. 106, 143201 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    A. Perali, P. Pieri, G.C. Strinati, C. Castellani, Phys. Rev. B 66, 024510 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    S. Tsuchiya, R. Watanabe, Y. Ohashi, Phys. Rev. A 80, 033613 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    H. Tajima, Phys. Rev. A 97, 043613 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    G. Skorniakov, K. Ter-Martirosian, Sov. Phys. JETP 4, 648 (1957)Google Scholar
  34. 34.
    P. Niemann, H.-W. Hammer, Phys. Rev. A 86, 013628 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Quantum Hadron Physics LaboratoryRIKEN Nishina CenterWakoJapan

Personalised recommendations