Advertisement

Optical Lattice Effects on Shannon Information Entropy in Rotating Bose–Einstein Condensates

  • Qiang Zhao
  • Jingxiang Zhao
Article
  • 15 Downloads

Abstract

We investigate the formation of Shannon information entropy in a rotating Bose–Einstein condensates confined in a harmonic potential combined with an optical lattice (OL) using the mean field Gross–Pitaevskii equation. With the increase of OL depth \(V_0\), at the same rotational frequency \(\Omega \), we show that the information entropy increases in momentum space \(S_r\) and total entropy S and it decreases in position space \(S_k\). We also calculate the Landsberg order parameter \(\delta \) and its dependence on \(\Omega \). We find that the critical points between the case of OL and non-OL move along the direction of decreasing \(\Omega \) with the increase of \(V_0\). In particular, the dynamics behaviors indicate that the periodicity of S and \(S_{\text{ max }}\) loses due to the broken symmetry when OL is added.

Keywords

Shannon information entropy Bose–Einstein condensate Vortex Optical lattice 

Notes

Acknowledgements

The authors would like to thank Professor Weizhu Bao for his help on the numerical calculation. Q.Z. is supported by the Applied Basic Research Programs of Tangshan (Grant No. 18130219a). Innovation Fund (Grant No. X2017287) and Ph.D. Start-up Fund (Grant No. BS2017096) of North China University of Science and Technology.

References

  1. 1.
    I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    S.R. Gadre, Phys. Rev. A 30, 620 (1984)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Ohya, P. Petz, Quantum Entropy and Its Use (Springer, Berlin, 1993)CrossRefGoogle Scholar
  4. 4.
    V.V. Sokolov, B.A. Brown, V. Zelevinsky, Phys. Rev. E 58, 56 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    A. Nagy, R.G. Parr, Int. J. Quantum Chem. 58, 323 (1996)CrossRefGoogle Scholar
  6. 6.
    C.P. Panos, S.E. Massen, Int. J. Mod. Phys. E 6, 497 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    V. Zelevinsky, M. Horoi, B.A. Brown, Phys. Lett. B 350, 141 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    S.E. Massen, V.P. Psonis, A.N. Antonov, Int. J. Mod. Phys. E 14, 1251 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 119, 7030 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 122, 084101 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    R.P. Sagar, N.L. Guevara, J. Chem. Phys. 123, 044108 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Ch.C. Moustakidis, S.E. Massen, Phys. Rev. B 71, 045102 (2005)Google Scholar
  13. 13.
    S.E. Massen, V.P. Panos, Int. J. Mod. Phys. E 20, 1817 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S.T. Tserkis, Ch.C. Moustakidis, S.E. Massen, C.P. Panos, Phys. Lett. A 378, 497 (2014)Google Scholar
  15. 15.
    J. R. McKenney, W. J. Porter, J. E. Drut, arXiv:1709.09981
  16. 16.
    K. Kasamatsu, M. Tsubota, M. Ueda, Int. J. Mod. Phys. B 19, 1835 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    M. Ueda, Fundamentals and New Frontiers of Bose–Einstein Condensation (World Scientific, Singapore, 2010)CrossRefGoogle Scholar
  18. 18.
    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    S.K. Adhikari, Phys. Rev. A 81, 043636 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    A. Kato, Y. Nakano, K. Kasamatsu, Phys. Rev. A 84, 053623 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    J.W. Reijnders, R.A. Duine, Phys. Rev. Lett. 93, 060401 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    H. Pu, L.O. Baksmaty, S. Yi, N.P. Bigelow, Phys. Rev. Lett. 94, 190401 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    T. Sato, T. Ishiyama, T. Nikuni, Phys. Rev. A 76, 053628 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    D.S. Goldbaum, E.J. Mueller, Phys. Rev. A 77, 033629 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    H. Sakaguchi, B.A. Malomed, Phys. Rev. A 75, 013609 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    H. Sakaguchi, B.A. Malomed, Phys. Rev. A 78, 063606 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    H. Sakaguchi, B.A. Malomed, Phys. Rev. A 79, 043606 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    W. Bao, H.Q. Wang, P.A. Markowich, Commun. Math. Sci. 3, 57 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    S.E. Massen, Ch.C. Moustakidis, C.P. Panos, Phys. Lett. A 299, 131–136 (2002)Google Scholar
  31. 31.
    S.R. Gadre, R.D. Bendale, Phys. Rev. A 36, 1932 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    P.T. Landsberg, Phys. Lett. A 102, 171 (1984)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Q. Zhao, J. Low Temp. Phys. 182, 117 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Zhao, L.L. Zhang, Z. Rui, Int. J. Theor. Phys. 57, 2921 (2018)CrossRefGoogle Scholar
  35. 35.
    R. Kishor Kumar, B. Chakrabarti, A. Gammal, J. Low. Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-2051-8
  36. 36.
    W. Bao, H.Q. Wang, J. Comput. Phys. 217, 612 (2006)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    R.K. Kumar, P. Muruganandama, Eur. Phys. J. D 68, 289 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    S.E. Massen, C.P. Panos, Phys. Lett. A 280, 65–69 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    T. Sriraman, B. Chakrabarti, A. Trombettoni, P. Muruganandam, J. Chem. Phys. 147, 044304 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceNorth China University of Science and TechnologyTangshanChina
  2. 2.School of Applied ScienceBeijing Information Science & Technology UniversityBeijingChina

Personalised recommendations