Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 3–4, pp 246–261 | Cite as

Ultracold Fermionic Atoms in Square and Triangular Optical Lattices with Non-Abelian Gauge Fields and Out-of-Plane Zeeman Field

  • Zlatko KoinovEmail author
Article
  • 13 Downloads

Abstract

The single-band negative-U Hubbard model is applied to investigate ultracold Fermi atoms loaded into square and triangular optical lattices subjected to an effective non-Abelian gauge field and an out-of-plane Zeeman field. The mean-field approximation along with the generalized random phase approximation is used to numerically calculate important and experimentally relevant physical quantities, such as the chemical potential, the pairing gap, the singlet and the triplet condensate fractions, and the slope of the Goldstone sound mode. We found that the Gaussian approximation significantly overestimates the speed of the Goldstone sound mode (by around 30%–40%), and unlike the case of a synthetic Rashba spin–orbit coupling which exhibits sharp changes of the slope of the sound mode across the topological phase transition points, in the presence of both non-Abelian gauge field and out-of-plane Zeeman field the slope of the sound mode is a relatively smooth function.

Keywords

Square optical lattice Triangular optical lattice Number equation Gap equation Bethe–Salpeter equation 

References

  1. 1.
    H. Pino, E. Alba, J. Taron, J.J. Garcia-Ripoll, N. Barberán, Phys. Rev. A 87, 053611 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    N. Goldman, J. Beugnon, F. Gerbier, Phys. Rev. Lett. 108, 255303 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    N. Goldman, J. Beugnon, F. Gerbier, Eur. Phys. J. Spec. Top. 217, 135 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Greiner, C.A. Regal, J.T. Stewart, D.S. Jin, Phys. Rev. Lett. 94, 110401 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Nature 483, 302 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Fu, L. Huang, Z. Meng, P. Wang, X.-J. Liu, H. Pu, H. Hu, J. Zhang, Phys. Rev. A 87, 053619 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    X.-J. Liu, K.T. Law, T.K. Ng, Phys. Rev. Lett. 112, 086401 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, J.-W. Pan, Science 354, 83 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Koinov, R. Mendoza, J. Low Temp. Phys. 181, 147 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    L. He, X.-G. Huang, Phys. Rev. A 86, 043618 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    L. He, X.-G. Huang, Ann. Phys. 337, 163 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    I.I. Satija, D.C. Dakin, J.Y. Vaishnav, C.W. Clark, Phys. Rev. A 77, 043410 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A. Bermudez, N. Goldman, A. Kubashiak, M. Lewenstein, M.A. Martin-Delgado, Phys. Rev. Lett. 103, 035301 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    N. Goldman, A. Kubashiak, A. Bermudez, P. Gaspard, M. Lewenstein, M.A. Martin-Delgado, N. J. Phys. 12, 033041 (2010)CrossRefGoogle Scholar
  15. 15.
    N. Goldman, A. Kubasiak, P. Gaspard, M. Lewenstein, Phys. Rev. A 79, 023624 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Kubasiak, P. Massignan, M. Lewenstein, Europhys. Lett. 92, 46004 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    L. Wang, L. Fu, Phys. Rev. A 87, 053612 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Iskin, Phys. Rev. A 88, 013631 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    M. Burrello, I.C. Fulga, E. Alba, L. Lepori, A. Trombettoni, Phys. Rev. A 88, 053619 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Q. Sun, G.-B. Zhu, W.-M. Liu, A.-C. Ji, Phys. Rev. A 88, 063637 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zhang, C. Zhang, Phys. Rev. A 87, 023611 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    F. Lin, C. Zhang, V.W. Scarola, Phys. Rev. Lett. 112, 110404 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    D. Toniolo, J. Linder, Phys. Rev. A 89, 061605(R) (2014)ADSCrossRefGoogle Scholar
  24. 24.
    C. Qu, M. Gong, C. Zhang, Phys. Rev. A 89, 053618 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Xu, C. Qu, M. Gong, C. Zhang, Phys. Rev. A 89, 013607 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    H. Zhai, Rep. Prog. Phys. 78, 026001 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    H.-K. Tang, X. Yang, J. Sun, H.-Q. Lin, Europhys. Lett. 107, 40003 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M. Iskin, Phys. Rev. A 93, 013608 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Koinov, S. Pahl, Phys. Rev. A 95, 033634 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Z. Koinov, Phys. Rev. B 72, 085203 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Z.G. Koinov, Adv. Cond. Matter Phys. 2015, 952852 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations