Journal of Low Temperature Physics

, Volume 194, Issue 3–4, pp 235–245 | Cite as

Spin Seebeck Effect in a Multiple Quantum Dot Molecule with Spin-Dependent Interdot Coupling

  • Lian-Liang Sun
  • Feng ChiEmail author
  • Zhen-Guo Fu
  • Shu-Chao Yu
  • Li-Ming Liu
  • Hong-Wei Chen


We study the spin Seebeck effect in a circularly connected triple quantum dot (TQD) structure taking the spin-dependent interdot coupling and magnetic flux into consideration. Particular attention is paid on the generation and manipulation of the 100% spin-polarized and pure spin thermopowers, which denote the arisen spin voltage in response of an infinitely small temperature gradient applied across the system. This can be realized by adjusting the peaks’ positions in the spin-up and spin-down thermopowers with the help of the spin polarization of the interdot couplings. At low temperature, a large value of pure spin thermopower is obtained even under very weak spin polarization of the interdot coupling. Strong spin polarization of it is favorable for 100% spin-polarized thermopower whose magnitude can reach as large as that of the charge one. We also find that a sign change of the considered two quantities can be realized by adjusting the magnetic flux penetrating through the TQDs. The present results could be useful in designing high-efficiency pure spin energy conversion and spin filter devices.


Spin Seebeck effect Quantum dot Spin-dependent interdot coupling Spin-polarized thermopower 



We gratefully acknowledge the financial support from the NSFC (Grant Nos. 61274101 and 11675023) and the Initial Project of UEST of China, Zhongshan Institute (415YKQ02), Science and Technology Bureau of Zhongshan (Grant Nos. 2017B1116, 2017B1016). This work is also supported by the Innovation Team of Zhongshan City (No. 170615151170710).


  1. 1.
    K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Nature 455, 778 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    M. Johnson, Solid State Commun. 150, 543 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    G.E. Bauer, E. Saitoh, B.J. van Wees, Nat. Mater. 150, 391 (2010)Google Scholar
  4. 4.
    C.M. Jaworski, J. Yang, S. Mack, D.D. Awschalom, J.P. Heremans, R.C. Myers, Nat. Mater. 9, 898 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    D. Qu, S.Y. Huang, J. Hu, R. Wu, C.L. Chien, Phys. Rev. Lett. 110, 067206 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G.E.W. Bauer, S. Maekawa, E. Saitoh, Nat. Mater. 9, 894 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh, Nature 464, 262 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    C.M. Jaworski, R.C. Myers, E.J. Halperin, J.P. Heremans, Nature 487, 210 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Dubi, M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ren, J. Fransson, J.X. Zhu, Phys. Rev. B 89, 214407 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    L. Gu, H.H. Fu, R. Wu, Phys. Rev. B 94, 115433 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    J. Ren, Phys. Rev. B 88, 220406(R) (2013)ADSCrossRefGoogle Scholar
  14. 14.
    G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    V. Zlatić, B. Horvatić, I. Milat, B. Coqblin, Phys. Rev. B 68, 104432 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M. Krawiec, K.I. Wysokiński, Phys. Rev. B 73, 075307 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    R. Świrkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Dubi, M. Di Ventra, Phys. Rev. B 79, 018302(R) (2009)Google Scholar
  19. 19.
    D.M.T. Kuo, Y.C. Chang, Phys. Rev. B 81, 205321 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J. Liu, Q.F. Sun, X.C. Xie, Phys. Rev. B 81, 245323 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Y.S. Liu, F. Chi, X.F. Yang, J.F. Feng, J. Appl. Phys. 109, 053712 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    F. Chi, J. Zheng, X.D. Lu, K.C. Zhang, Phys. Lett. A 375, 1352 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J. Zheng, F. Chi, J. Appl. Phys. 111, 093702 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    F. Chi, J. Zheng, Y.S. Liu, Y. Guo, Appl. Phys. Lett. 100, 233106 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    X.B. Chen, D.P. Liu, W.H. Duan, H. Guo, Phys. Rev. B 87, 085427 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Q. Wang, H.Q. Xie, Y.H. Nie, W. Ren, Phys. Rev. B 87, 075102 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    R. Sanchez, B. Sothmann, A.N. Jordan, M. Büttiker, New J. Phys 15, 125001 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Ł. Karwacki, P. Trocha, J. Barnaś, J. Phys. Condens. Matter 25, 505305 (2013)CrossRefGoogle Scholar
  29. 29.
    X. Yang, J. Zheng, C.L. Li, Y. Guo, J. Phys. Condens. Matter 27, 075302 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    S.Y. Hwang, R. Lopez, D. Sanchez, Phys. Rev. B 94, 054506 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Ramos-Andrade, F.J. Peña, A. González, O. Ávalos-Ovando, P.A. Orellana, Phys. Rev. B 96, 165413 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Rev. Mod. Phys 75, 1 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Bosu, Y. Sakuraba, K. Uchida, K. Saito, T. Ota, E. Saitoh, K. Takanashi, Phys. Rev. B 83, 224401 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    B.W. Wu, G.Y. Luo, J.G. Lin, S.Y. Huang, Phys. Rev. B 96, 060402(R) (2017)ADSCrossRefGoogle Scholar
  35. 35.
    N. Okuma, M.R. Masir, A.H. MacDonald, Phys. Rev. B 95, 165418 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    S.R. Boona, J.P. Heremans, Phys. Rev. B 90, 064421 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    S.R. Etesami, L. Chotorlishvili, J. Berakdar, Appl. Phys. Lett. 107, 132402 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    A. Alekhin, I. Razdolski, N. Ilin, J.P. Meyburg, D. Diesing, V. Roddatis, I. Rungger, Phys. Rev. Lett. 119, 017202 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    P. Trocha, J. Barnaś, Phys. Rev. B 85, 085408 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    W.Z. Wang, Phys. Rev. B 78, 235316 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    M. Busl, R. Sánchez, G. Platero, Phys. Rev. B 81, 121306(R) (2010)ADSCrossRefGoogle Scholar
  42. 42.
    M. Niklas, A. Trottmann, A. Donarini, M. Grifoni, Phys. Rev. B 95, 115133 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Z.T. Jiang, Q.F. Sun, Y.P. Wang, Phys. Rev. B 72, 045332 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Z.T. Jiang, Q.F. Sun, J. Phys. Condens. Matter 19, 156213 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    A.K. Hüttel, S. Ludwig, H. Lorenz, K. Eberl, J.P. Kotthaus, Phys. Rev. B 72, 081310(R) (2005)ADSCrossRefGoogle Scholar
  46. 46.
    Z.J. Li, Y.H. Jin, Y.H. Nie, J.Q. Liang, J. Phys. Condens. Matter 20, 085214 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    H.X. Wang, W. Yin, F. Wang, J. Appl. Phys. 109, 053710 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    L. Gaudreau, A. Kam, G. Granger, S.A. Studenikin, P. Zawadzki, A.S. Sachrajda, Appl. Phys. Lett. 95, 193101 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    S. Hershfield, K.A. Muttalib, B.J. Nartowt, Phys. Rev. B 88, 085426 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    V.M.G. Suárez, R. Ferradás, J. Ferrer, Phys. Rev. B 88, 235417 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    C. Emary, Phys. Rev. B 76, 245319 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    M. Matsuo, Y. Ohnuma, T. Kato, S. Maekawa, Phys. Rev. Lett. 120, 037201 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lian-Liang Sun
    • 1
  • Feng Chi
    • 2
    Email author
  • Zhen-Guo Fu
    • 3
  • Shu-Chao Yu
    • 4
  • Li-Ming Liu
    • 2
  • Hong-Wei Chen
    • 4
  1. 1.College of ScienceNorth China University of TechnologyBeijingChina
  2. 2.School of Electronic and Information Engineering, Zhongshan InstituteUniversity of Electronic Science and Technology of ChinaZhongshanChina
  3. 3.Institute of Applied Physics and Computational MathematicsBeijingChina
  4. 4.State Key Laboratory of Electronic Thin Films and Integrated DeviceUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations