Journal of Low Temperature Physics

, Volume 194, Issue 5–6, pp 370–376 | Cite as

Intrinsic Losses and Noise of High-Q Lithographic MHz LC Resonators for Frequency Division Multiplexing

  • L. GottardiEmail author
  • J. van der Kuur
  • M. Bruijn
  • A. van der Linden
  • M. Kiviranta
  • H. Akamatsu
  • R. den Hartog
  • K. Ravensberg


We are developing the frequency division multiplexing (FDM) read-out for the superconducting transition-edge sensors arrays of the X-IFU instrument on board of Athena and of the SAFARI instrument on board of SPICA. An essential component of the FDM is the array of narrow band superconducting resonators, each consisting of lithographically made inductors and capacitors. In the standard FDM configuration, the LC resonators are connected in series with the input coil of a low noise two-stage SQUID amplifier. In this work, we have modified the electrical scheme to weakly couple the SQUID amplifier from the LC filters in order to measure their intrinsic properties. We report on the intrinsic losses and on the noise of high-Q superconducting LC resonators, with resonant frequencies ranging between 1 and 5 MHz, measured at temperatures from 70 to 500 mK. The LC resonators show very low losses with values smaller than \(0.5\,\mathrm {m}\Omega \) at equilibrium temperatures below 100 mK. We demonstrate that the LC resonators noise is thermal between 500 and 70 mK.


High-Q LC resonator Thermal noise FDM Transition-edge sensor 



H. A. acknowledges the support of NWO via a Veni Grant. SRON is supported financially by NWO, the Netherlands Organization for Scientific Research.


  1. 1.
    P. Roelfsema, M. Giard, F. Najarro, K. Wafelbakker, W. Jellema, B. Jackson et al., in Proceedings of SPIE, Space Telescope and Instrumentation 2014, vol. 9143 (2014), pp. 9143–9154.
  2. 2.
    D. Barret et al., in Proceedings of SPIE, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, vol. 9905 (2016), p. 99052FGoogle Scholar
  3. 3.
    M.P. Bruijn, L. Gottardi, R. den Hartog, J. van der Kuur, A.J. van der Linden, B.D. Jackson, J. Low Temp. Phys. 176(3), 421 (2014). ADSGoogle Scholar
  4. 4.
    M.P. Bruijn, A.J. van der Linden, L. Ferrari, L. Gottardi, J. van der Kuur, R. den Hartog, H. Akamatsu, B.D. Jackson, J. Low Temp. Phys. (2018).
  5. 5.
    M. Kiviranta, L. Grnberg, N. Beev, J. van der Kuur, J. Phys. Conf. Ser. 507(4), 042017 (2014)CrossRefGoogle Scholar
  6. 6.
    L. Gottardi, M. Kiviranta, J. van der Kuur, H. Akamatsu, M.P. Bruijn, R. den Hartog, IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015). CrossRefGoogle Scholar
  7. 7.
    L. Gottardi, M. Bruijn, J.-R. Gao, J. den Hartog, R. Hijmering, H. Hoevers, P. Khosropanah, J. van der Kuur, M. Ridder, J. Low Temp. Phys. 176(279–284), 3 (2014)Google Scholar
  8. 8.
    P. Falferi, M. Bonaldi, M. Cerdonio, A. Vinante, S. Vitale, Appl. Phys. Lett. 73(24), 3589–3591 (1998). ADSCrossRefGoogle Scholar
  9. 9.
    J. van der Kuur, M. Kiviranta, XIFU Technical Notes (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands
  2. 2.SRON Netherlands Institute for Space ResearchGroningenThe Netherlands
  3. 3.VTTEspooFinland

Personalised recommendations