Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 5–6, pp 1112–1121 | Cite as

SPIDER: CMB Polarimetry from the Edge of Space

  • R. Gualtieri
  • J. P. Filippini
  • P. A. R. Ade
  • M. Amiri
  • S. J. Benton
  • A. S. Bergman
  • R. Bihary
  • J. J. Bock
  • J. R. Bond
  • S. A. Bryan
  • H. C. Chiang
  • C. R. Contaldi
  • O. Doré
  • A. J. Duivenvoorden
  • H. K. Eriksen
  • M. Farhang
  • L. M. Fissel
  • A. A. Fraisse
  • K. Freese
  • M. Galloway
  • A. E. Gambrel
  • N. N. Gandilo
  • K. Ganga
  • R. V. Gramillano
  • J. E. Gudmundsson
  • M. Halpern
  • J. Hartley
  • M. Hasselfield
  • G. Hilton
  • W. Holmes
  • V. V. Hristov
  • Z. Huang
  • K. D. Irwin
  • W. C. Jones
  • C. L. Kuo
  • Z. D. Kermish
  • S. Li
  • P. V. Mason
  • K. Megerian
  • L. Moncelsi
  • T. A. Morford
  • J. M. Nagy
  • C. B. Netterfield
  • M. Nolta
  • B. Osherson
  • I. L. Padilla
  • B. Racine
  • A. S. Rahlin
  • C. Reintsema
  • J. E. Ruhl
  • M. C. Runyan
  • T. M. Ruud
  • J. A. Shariff
  • J. D. Soler
  • X. Song
  • A. Trangsrud
  • C. Tucker
  • R. S. Tucker
  • A. D. Turner
  • J. F. van der List
  • A. C. Weber
  • I. K. Wehus
  • D. V. Wiebe
  • E. Y. Young
Article
  • 42 Downloads

Abstract

Spider is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. Spider targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. Spider ’s first long-duration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled transition-edge sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the Spider instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. Spider ’s second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.

Keywords

Cosmic microwave background Inflation Bolometers Transition-edge sensors Polarimetry 

Notes

Acknowledgements

Spider is supported in the USA by the National Aeronautics and Space Administration under Grants NNX07AL64G, NNX12AE95G, and NNX17AC55G issued through the Science Mission Directorate and by the National Science Foundation through PLR-1043515. Logistical support for the Antarctic deployment and operations was provided by the NSF through the US Antarctic Program. Cosmic ray response studies are supported by NASA under Grant 14-SAT14-0009. Support in Canada is provided by the National Sciences and Engineering Council and the Canadian Space Agency. Support in Norway is provided by the Research Council of Norway. Support in Sweden is provided by the Swedish Research Council through the Oskar Klein Centre (Contract no. 638-2013-8993). KF acknowledges support from DoE Grant DE-SC0007859 at the University of Michigan. The collaboration is grateful to the British Antarctic Survey, particularly Sam Burrell, for invaluable assistance with data and payload recovery after the 2015 flight. We also wish to acknowledge the generous support of the David and Lucile Packard Foundation, which has been crucial to the success of the project.

References

  1. 1.
    S. Dodelson, R. Easther, S. Hanany, et al., Astro2010: The Astronomy and Astrophysics Decadal Survey (The National Academies Press, 2010).  https://doi.org/10.17226/12951
  2. 2.
    P.A.R. Ade, N. Aghanim, Z. Ahmed, BICEP2/Keck Collaboration and Planck Collaboration et al., Phys. Rev. Lett. 114(10) (2015).  https://doi.org/10.1103/PhysRevLett.114.101301
  3. 3.
    P.A.R. Ade, N. Aghanim, M. Arnaud, Planck Collaboration et al., Astron. Astrophys. 594, 65 (2016).  https://doi.org/10.1051/0004-6361/201525898
  4. 4.
    J.P. Filippini, P.A.R. Ade, M. Amiri et al., Proc. SPIE 7741, 77411N (2010).  https://doi.org/10.1117/12.857720 CrossRefGoogle Scholar
  5. 5.
    A.A. Fraisse, P.A.R. Ade, M. Amiri, J. Cosmol. Astropart. Phys. 4, 047 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    A.S. Rahlin, P.A.R. Ade, M. Amiri et al., Proc. SPIE 9153, 915313 (2014).  https://doi.org/10.1117/12.2055683 CrossRefGoogle Scholar
  7. 7.
  8. 8.
    J. Bock, A. Aljabri, A. Amblard et al., arXiv:0906.1188 (2009)
  9. 9.
    J.D. Soler, P.A.R. Ade, M. Amiri et al., Proc. SPIE 9145, 91450T (2014).  https://doi.org/10.1117/12.2055413 CrossRefGoogle Scholar
  10. 10.
    J.A. Shariff, P.A.R. Ade, M. Amiri et al., Proc. SPIE 9145, 91450U (2014).  https://doi.org/10.1117/12.2055166 CrossRefGoogle Scholar
  11. 11.
    N.N. Gandilo, M. Ade, M. Amiri et al., Proc. SPIE 9145, 91452U (2014).  https://doi.org/10.1117/12.2055156 CrossRefGoogle Scholar
  12. 12.
    J.E. Gudmundsson, P.A.R. Ade, M. Amiri et al., Cryogenics 72, 65–76 (2015).  https://doi.org/10.1016/j.cryogenics.2015.09.002 ADSCrossRefGoogle Scholar
  13. 13.
    K.W. Yoon, P.A.R. Ade, D. Barkats et al., Proc. SPIE 6275, 62751K (2006).  https://doi.org/10.1117/12.672652 CrossRefGoogle Scholar
  14. 14.
    B.G. Keating, P.A.R. Ade, J.J. Bock, Proc. SPIE 4843, 284–295 (2003).  https://doi.org/10.1117/12.459274 ADSCrossRefGoogle Scholar
  15. 15.
    P.A.R. Ade, R.W. Aikin, BICEP2 Collaboration et al., Astrophys. J 792, 62 (2014).  https://doi.org/10.1088/0004-637X/792/1/62 ADSCrossRefGoogle Scholar
  16. 16.
    P.A.R. Ade, G. Pisano, C. Tucker, S. Weaver, Proc. SPIE 6275, 62750U (2006).  https://doi.org/10.1117/12.673162 ADSCrossRefGoogle Scholar
  17. 17.
    S. Bryan, P. Ade, M. Amiri et al., Rev. Sci. Instrum. 87, 014501 (2016).  https://doi.org/10.1063/1.4939435 ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Bryan, P.A.R. Ade, M. Amiri et al., Proc. SPIE 7741, 77412B (2010).  https://doi.org/10.1117/12.857837 CrossRefGoogle Scholar
  19. 19.
    P.A.R. Ade, R.W. Aikin, M. Amiri, BICEP2 Collaboration and Keck Array Collaboration and Spider Collaboration, Astrophys. J. 812, 176 (2015).  https://doi.org/10.1088/0004-637X/812/2/176 ADSCrossRefGoogle Scholar
  20. 20.
    E.S. Battistelli, M. Amiri, B. Burger, J. Low Temp. Phys. 151(3), 908–914 (2008).  https://doi.org/10.1007/s10909-008-9772-z ADSCrossRefGoogle Scholar
  21. 21.
    P.A.J. de Korte, J. Beyer, S. Deiker, Rev. Sci. Instrum. 74, 3807 (2003).  https://doi.org/10.1063/1.1593809 ADSCrossRefGoogle Scholar
  22. 22.
    M.C. Runyan, P.A.R. Ade, M. Amiri et al., Proc. SPIE 7741, 77411O (2010).  https://doi.org/10.1117/12.857715 CrossRefGoogle Scholar
  23. 23.
    J.M. Nagy, P.A.R. Ade, M. Amiri, Astrophys. J 844, 151 (2017).  https://doi.org/10.3847/1538-4357/aa7cfd ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Lamarre, J.L. Puget, P.A.R. Ade, Astron. Astrophys. 520, 20 (2010).  https://doi.org/10.1051/0004-6361/200912975 CrossRefGoogle Scholar
  25. 25.
    P.A.R. Ade, N. Aghanim, M. Arnaud, Planck Collaboration et al., Astron. Astrophys. 571, A10 (2014).  https://doi.org/10.1051/0004-6361/201321577
  26. 26.
    A. Catalano, P. Ade, Y. Atik, J. Low Temp. Phys. 176(5), 773–786 (2014).  https://doi.org/10.1007/s10909-014-1116-6 ADSCrossRefGoogle Scholar
  27. 27.
    J. Hubmayr, J.E. Austermann, J.A. Beall et al., Proc. SPIE 9914, 99140V (2016).  https://doi.org/10.1117/12.2231896 CrossRefGoogle Scholar
  28. 28.
    A.S. Bergman, P.A.R. Ade, S. Akers et al., 280 GHz focal plane unit design and characterization for the SPIDER-2 suborbital polarimeter. J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-2065-2

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. Gualtieri
    • 1
  • J. P. Filippini
    • 1
    • 2
  • P. A. R. Ade
    • 3
  • M. Amiri
    • 4
  • S. J. Benton
    • 5
  • A. S. Bergman
    • 5
  • R. Bihary
    • 6
  • J. J. Bock
    • 7
    • 8
  • J. R. Bond
    • 9
  • S. A. Bryan
    • 10
  • H. C. Chiang
    • 11
    • 12
  • C. R. Contaldi
    • 13
  • O. Doré
    • 7
    • 8
  • A. J. Duivenvoorden
    • 14
  • H. K. Eriksen
    • 15
  • M. Farhang
    • 9
    • 34
  • L. M. Fissel
    • 16
    • 17
  • A. A. Fraisse
    • 5
  • K. Freese
    • 14
    • 18
  • M. Galloway
    • 19
  • A. E. Gambrel
    • 5
  • N. N. Gandilo
    • 20
    • 21
  • K. Ganga
    • 22
  • R. V. Gramillano
    • 1
  • J. E. Gudmundsson
    • 14
  • M. Halpern
    • 4
  • J. Hartley
    • 19
  • M. Hasselfield
    • 23
  • G. Hilton
    • 24
  • W. Holmes
    • 8
  • V. V. Hristov
    • 7
  • Z. Huang
    • 9
  • K. D. Irwin
    • 25
    • 26
  • W. C. Jones
    • 5
  • C. L. Kuo
    • 25
  • Z. D. Kermish
    • 5
  • S. Li
    • 5
    • 16
    • 27
  • P. V. Mason
    • 7
  • K. Megerian
    • 8
  • L. Moncelsi
    • 7
  • T. A. Morford
    • 7
  • J. M. Nagy
    • 6
    • 28
  • C. B. Netterfield
    • 16
    • 19
  • M. Nolta
    • 9
  • B. Osherson
    • 1
  • I. L. Padilla
    • 16
    • 20
  • B. Racine
    • 15
    • 29
  • A. S. Rahlin
    • 30
    • 31
  • C. Reintsema
    • 24
  • J. E. Ruhl
    • 6
  • M. C. Runyan
    • 8
  • T. M. Ruud
    • 15
  • J. A. Shariff
    • 9
  • J. D. Soler
    • 32
    • 33
  • X. Song
    • 5
  • A. Trangsrud
    • 7
    • 8
  • C. Tucker
    • 3
  • R. S. Tucker
    • 7
  • A. D. Turner
    • 8
  • J. F. van der List
    • 5
  • A. C. Weber
    • 8
  • I. K. Wehus
    • 15
  • D. V. Wiebe
    • 4
  • E. Y. Young
    • 5
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of AstronomyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.School of Physics and AstronomyCardiff UniversityCardiffUK
  4. 4.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  5. 5.Department of PhysicsPrinceton UniversityPrincetonUSA
  6. 6.Physics Department, Center for Education and Research in Cosmology and AstrophysicsCase Western Reserve UniversityClevelandUSA
  7. 7.Division of Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaUSA
  8. 8.Jet Propulsion LaboratoryPasadenaUSA
  9. 9.Canadian Institute for Theoretical AstrophysicsUniversity of TorontoTorontoCanada
  10. 10.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  11. 11.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  12. 12.National Institute for Theoretical Physics (NITheP)DurbanSouth Africa
  13. 13.Blackett LaboratoryImperial College LondonLondonUK
  14. 14.The Oskar Klein Centre for Cosmoparticle Physics, Department of PhysicsStockholm UniversityStockholmSweden
  15. 15.Institute of Theoretical AstrophysicsUniversity of OsloOsloNorway
  16. 16.Department of Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  17. 17.National Radio Astronomy ObservatoryCharlottesvilleUSA
  18. 18.Department of PhysicsUniversity of MichiganAnn ArborUSA
  19. 19.Department of PhysicsUniversity of TorontoTorontoCanada
  20. 20.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA
  21. 21.NASA Goddard Space Flight CenterGreenbeltUSA
  22. 22.APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de ParisSorbonne Paris CiteFrance
  23. 23.Pennsylvania State UniversityUniversity ParkUSA
  24. 24.National Institute of Standards and TechnologyBoulderUSA
  25. 25.Department of PhysicsStanford UniversityStanfordUSA
  26. 26.SLAC National Accelerator LaboratoryMenlo ParkUSA
  27. 27.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  28. 28.Dunlap Institute for Astronomy & AstrophysicsUniversity of TorontoTorontoCanada
  29. 29.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  30. 30.Fermi National Accelerator LaboratoryBataviaUSA
  31. 31.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoUSA
  32. 32.Max-Planck-Institute for AstronomyHeidelbergGermany
  33. 33.Laboratoire AIM, Paris-SaclayCEA/IRFU/Sap-CNRS-Université Paris DiderotGif-sur-Yvette CedexFrance
  34. 34.Physics DepartmentShahid Beheshti UniversityTehranIran

Personalised recommendations