Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 1–2, pp 60–73 | Cite as

LongHCPulse: Long-Pulse Heat Capacity on a Quantum Design PPMS

  • Allen Scheie
Article

Abstract

This paper presents LongHCPulse: software which enables heat capacity to be collected on a Quantum Design PPMS using a long-pulse method. This method, wherein heat capacity is computed from the time derivative of sample temperature over long (30 min) measurement times, is necessary for probing first-order transitions and shortens the measurement time by a factor of five. LongHCPulse also includes plotting utilities based on the Matplotlib library. I illustrate the use of LongHCPulse with the example of data taken on \(\mathrm{Yb_{2}Ti_{2}O_{7}}\), \(\mathrm{KNi_{2}Se_{2}}\), and \(\mathrm Na_2Ti_3Cl_8\), comparing the results to the standard semi-adiabatic method.

Keywords

Heat capacity Phase transitions PPMS 

Notes

Acknowledgements

Thanks to Kate Arpino, James R. Neilson, and Zachary Kelley for allowing me to test LongHCPulse with their data. Thanks also to Tyrel M. McQueen for additional helpful suggestions. The author was supported through the Gordon and Betty Moore foundation under the EPIQS program GBMF4532.

Supplementary material

References

  1. 1.
    A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003)CrossRefGoogle Scholar
  2. 2.
    I. Mirebeau, A. Apetrei, J. Rodriguez-Carvajal, P. Bonville, A. Forget, D. Colson, V. Glazkov, J.P. Sanchez, O. Isnard, E. Suard, Phys. Rev. Lett. 94, 246402 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Kemper, O. Vafek, J.B. Betts, F.F. Balakirev, W.N. Hardy, R. Liang, D.A. Bonn, G.S. Boebinger, Nat. Phys. 12, 47 (2016)CrossRefGoogle Scholar
  4. 4.
    R. Applegate, N.R. Hayre, R.R.P. Singh, T. Lin, A.G.R. Day, M.J.P. Gingras, Phys. Rev. Lett. 109, 097205 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S.E. Dutton, M. Kumar, M. Mourigal, Z.G. Soos, J.-J. Wen, C.L. Broholm, N.H. Andersen, Q. Huang, M. Zbiri, R. Toft-Petersen, R.J. Cava, Phys. Rev. Lett. 108, 187206 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, R. Kato, Nat. Commun. 2, 275 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    D. Pomaranski, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Nat. Phys. 9, 353 (2013)CrossRefGoogle Scholar
  8. 8.
    Quantum Design, Physical Property Measurement System Heat Capacity Option Users Manual, 26th edn. (Quantum Design, San Diego, 2015)Google Scholar
  9. 9.
    Q. Shi, C.L. Snow, J. Boerio-Goates, B.F. Wood- field, J. Chem. Thermodyn. 42, 1107 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Lashley, M. Hundley, A. Migliori, J. Sarrao, P. Pagliuso, T. Darling, M. Jaime, J. Cooley, W. Hults, L. Morales, D. Thoma, J. Smith, J. Boerio-Goates, B. Woodfield, G. Stewart, R. Fisher, N. Phillips, Cryogenics 43, 369 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    C.A. Kennedy, M. Stancescu, R.A. Marriott, M.A. White, Cryogenics 47, 107 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Scheie, J. Kindervater, S. Subert, C. Duvinage, C. Pfleiderer, H.J. Changlani, S. Zhang, L. Harriger, K. Arpino, S.M. Koohpayeh, O. Tchernyshyov, C. Broholm, Phys. Rev. Lett. 119, 127201 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Kelley, T.T. Tran, T.M. McQueen, (to be submitted)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Quantum Matter and Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations