Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 562–569 | Cite as

Development of a Data Acquisition System for Kinetic Inductance Detectors: Wide Dynamic Range and High Sampling Rate for Astronomical Observation

  • J. Suzuki
  • H. Ishitsuka
  • K. Lee
  • S. Oguri
  • O. Tajima
  • N. Tomita
  • E. Won
Article

Abstract

Microwave kinetic inductance detectors have a variety of potential applications in astronomical observations. We built a data acquisition system for kinetic inductance detectors combining a dedicated analog board and a commercially available digital board to meet the requirements of astronomical measurements, such as observation of the cosmic microwave background. This paper reports the status of the development of the data acquisition system. We have already achieved simultaneous readout through 120 channels using a direct down-conversion method to decode the signal. A variety of software has been developed and tested using the functionalities of the system and actual detectors.

Keywords

Kinetic inductance detector Readout electronics Cosmic microwave background GroundBIRD 

Notes

Acknowledgements

This work is supported by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology, Japan (KAKENHI Grant Nos. 15H05743, 16J09435), the Center for the Promotion of Integrated Sciences of SOKENDAI, and the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant No. NRF-2017R1A2B3001968). We thank the Research Center for Neutrino Science, Tohoku University, and RIKEN Center for Advanced Photonics for their feedback on the readout system. We also acknowledge support from the Open Source Consortium of Instrumentation (Open-It).

References

  1. 1.
    P.A.R. Ade et al. [BICEP2 and Keck Array Collaborations], Phys. Rev. Lett. 116, 031302 (2016).  https://doi.org/10.1103/PhysRevLett.116.031302. [arXiv:1510.09217 [astro-ph.CO]]
  2. 2.
    D. Hanson et al. [SPTpol Collaboration], Phys. Rev. Lett. 111, no. 14, 141301 (2013).  https://doi.org/10.1103/PhysRevLett.111.141301. [arXiv:1307.5830 [astro-ph.CO]]
  3. 3.
    T. Louis et al. [ACTPol Collaboration], JCAP 1706, no. 06, 031 (2017).  https://doi.org/10.1088/1475-7516/2017/06/031. [arXiv:1610.02360 [astro-ph.CO]]CrossRefGoogle Scholar
  4. 4.
    J.A. Grayson et al. [BICEP3 Collaboration], Proc. SPIE Int. Soc. Opt. Eng. 9914, 99140S (2016).  https://doi.org/10.1117/12.2233894. [arXiv:1607.04668 [astro-ph.IM]]
  5. 5.
    T. Matsumura et al., J. Low Temp. Phys. 176, 733 (2014).  https://doi.org/10.1007/s10909-013-0996-1. [arXiv:1311.2847 [astro-ph.IM]]ADSCrossRefGoogle Scholar
  6. 6.
    A. Suzuki et al. [POLARBEAR Collaboration], J. Low. Temp. Phys. 184, no. 3–4, 805 (2016).  https://doi.org/10.1007/s10909-015-1425-4. [arXiv:1512.07299 [astro-ph.IM]]ADSCrossRefGoogle Scholar
  7. 7.
    K.N. Abazajian et al. [CMB-S4 Collaboration]. arXiv:1610.02743 [astro-ph.CO]
  8. 8.
    J.A. Chervenak, K.D. Irwin, E.N. Grossman et al., Appl. Phys. Lett. 74, 4043 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    T.M. Lanting, H.-M. Cho, J. Clarke et al., Nucl. Instrum. Methods Phys. Res. A 520, 548 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425(6960), 817–821 (2003). 10ADSCrossRefGoogle Scholar
  12. 12.
    H. Ishitsuka, M. Ikeno, S. Oguri, O. Tajima, N. Tomita, T. Uchida, J. Low Temp. Phys. 184(1), 424–430 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    O. Bourrion, A. Bideaud, A. Benoit, A. Cruciani, J. Macias-Perez, A. Monfardini, M. Roesch, L. Swenson, C. Vescovi. J. Instrum. 6(06), 06012Google Scholar
  14. 14.
    S.J.C. Yates, A.M. Baryshev, J.J.A. Baselmans, B. Klein, R. Güsten, Appl. Phys. Lett. 95(4), 042504 (2009).  https://doi.org/10.1063/1.3159818 ADSCrossRefGoogle Scholar
  15. 15.
    S. Oguri et al., J. Low Temp. Phys. 184(3–4), 786 (2016).  https://doi.org/10.1007/s10909-015-1420-9 ADSCrossRefGoogle Scholar
  16. 16.
    T. Nagasaki et al., J. Low Temp. Phys. LTD17 Special Issue, 2018 SubmittedGoogle Scholar
  17. 17.
    E-mail: suzukij@post.kek.jpGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  2. 2.The Graduate University for Advanced Studies (SOKENDAI)HayamaJapan
  3. 3.Korea UniversitySeongbuk-guKorea
  4. 4.RIKENWakoJapan
  5. 5.Department of PhysicsKyoto UniversityKyotoJapan
  6. 6.The University of TokyoBunkyo-kuJapan

Personalised recommendations