Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 103–112 | Cite as

Development of Multi-chroic MKIDs for Next-Generation CMB Polarization Studies

  • B. R. Johnson
  • D. Flanigan
  • M. H. Abitbol
  • P. A. R. Ade
  • S. Bryan
  • H.-M. Cho
  • R. Datta
  • P. Day
  • S. Doyle
  • K. Irwin
  • G. Jones
  • D. Li
  • P. Mauskopf
  • H. McCarrick
  • J. McMahon
  • A. Miller
  • G. Pisano
  • Y. Song
  • H. Surdi
  • C. Tucker
Article
  • 60 Downloads

Abstract

We report on the status of an ongoing effort to develop arrays of horn-coupled, polarization-sensitive microwave kinetic inductance detectors (MKIDs) that are each sensitive to two spectral bands between 125 and 280 GHz. These multi-chroic MKID arrays are tailored for next-generation, large-detector-count experiments that are being designed to simultaneously characterize the polarization properties of both the cosmic microwave background and Galactic dust emission. We present our device design and describe laboratory-based measurement results from two 23-element prototype arrays. From dark measurements of our first engineering array, we demonstrated a multiplexing factor of 92, showed the resonators respond to bath temperature changes as expected, and found that the fabrication yield was 100%. From our first optically loaded array, we found the MKIDs respond to millimeter-wave pulses; additional optical characterization measurements are ongoing. We end by discussing our plans for scaling up this technology to kilo-pixel arrays over the next 2 years.

Keywords

MKIDs Multi-chroic CMB Polarization 

Notes

Acknowledgements

This work is supported by NSF Grants AST-1509211 and AST-1711160 for Johnson; AST-1509078 and AST-1711242 for Mauskopf; AST-1506074 and AST-1710624 for Irwin. McCarrick is supported by a NASA Earth and Space Sciences Fellowship. We thank the Xilinx University Program for donating the FPGA hardware and software tools that were used in the readout system.

References

  1. 1.
    D. Flanigan, Kinetic Inductance Detectors for Measuring the Polarization of the Cosmic Microwave Background. Ph.D. thesis, Columbia University, 2018Google Scholar
  2. 2.
    B.R. Johnson, D. Flanigan, M.H. Abitbol, P.A.R. Ade, S. Bryan, H.-M. Cho, R. Datta, P. Day, S. Doyle, K. Irwin, G. Jones, S. Kernasovskiy, D. Li, P. Mauskopf, H. McCarrick, J. McMahon, A. Miller, G. Pisano, Y. Song, H. Surdi, C. Tucker, Polarization-sensitive multi-chroic MKIDs. Proc. SPIE 9914, 99140X (2016).  https://doi.org/10.1117/12.2233243 CrossRefGoogle Scholar
  3. 3.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).  https://doi.org/10.1038/nature02037 ADSCrossRefGoogle Scholar
  4. 4.
    M.H. Abitbol, Z. Ahmed, D. Barron, R. Basu Thakur, A.N. Bender, B.A. Benson, C.A. Bischoff, S.A. Bryan, J.E. Carlstrom, C.L. Chang, D.T. Chuss, K.T. Crowley, A. Cukierman, T. de Haan, M. Dobbs, T. Essinger-Hileman, J.P. Filippini, K. Ganga, J.E. Gudmundsson, N.W. Halverson, S. Hanany, S.W. Henderson, C.A. Hill, S.-P.P. Ho, J. Hubmayr, K. Irwin, O. Jeong, B.R. Johnson, S.A. Kernasovskiy, J.M. Kovac, A. Kusaka, A.T. Lee, S. Maria, P. Mauskopf, J.J. McMahon, L. Moncelsi, A.W. Nadolski, J.M. Nagy, M.D. Niemack, R.C. O’Brient, S. Padin, S.C. Parshley, C. Pryke, N.A. Roe, K. Rostem, J. Ruhl, S.M. Simon, S.T. Staggs, A. Suzuki, E.R. Switzer, O. Tajima, K.L. Thompson, P. Timbie, G.S. Tucker, J.D. Vieira, A.G. Vieregg, B. Westbrook, E.J. Wollack, K.W. Yoon, K.S. Young, E.Y. Young, CMB-S4 Technology Book, 1st edn. (2017). arXiv:1706.02464
  5. 5.
    K.N. Abazajian, P. Adshead, Z. Ahmed, S.W. Allen, D. Alonso, K.S. Arnold, C. Baccigalupi, J.G. Bartlett, N. Battaglia, B.A. Benson, C.A. Bischoff, J. Borrill, V. Buza, E. Calabrese, R. Caldwell, J.E. Carlstrom, C.L. Chang, T.M. Crawford, F.-Y. Cyr-Racine, F. De Bernardis, T. de Haan, S. di Serego Alighieri, J. Dunkley, C. Dvorkin, J. Errard, G. Fabbian, S. Feeney, S. Ferraro, J.P. Filippini, R. Flauger, G.M. Fuller, V. Gluscevic, D. Green, D. Grin, E. Grohs, J.W. Henning, J.C. Hill, R. Hlozek, G. Holder, W. Holzapfel, W. Hu, K.M. Huffenberger, R. Keskitalo, L. Knox, A. Kosowsky, J. Kovac, E.D. Kovetz, C.-L. Kuo, A. Kusaka, M. Le Jeune, A.T. Lee, M. Lilley, M. Loverde, M.S. Madhavacheril, A. Mantz, D.J.E. Marsh, J. McMahon, P.D. Meerburg, J. Meyers, A.D. Miller, J.B. Munoz, H.N. Nguyen, M.D. Niemack, M. Peloso, J. Peloton, L. Pogosian, C. Pryke, M. Raveri, C.L. Reichardt, G. Rocha, A. Rotti, E. Schaan, M.M. Schmittfull, D. Scott, N. Sehgal, S. Shandera, B.D. Sherwin, T.L. Smith, L. Sorbo, G.D. Starkman, K.T. Story, A. van Engelen, J.D. Vieira, S. Watson, N. Whitehorn, W.L. Kimmy Wu, CMB-S4 Science Book, 1st edn. (2016). arXiv:1610.02743
  6. 6.
    H. Surdi, Applications of Kinetic Inductance: Parametric Amplifier & Phase Shifter, 2DEG Coupled Co-planar Structures & Microstrip to Slotline Transition at RF Frequencies. Master’s thesis, Arizona State University, 2016Google Scholar
  7. 7.
    P. Kittara, J. Leech, G. Yassin, B.K. Tan, A. Jiralucksanawong, S. Wangsuya, High performance smooth-walled feed horns for focal plane arrays, in Ninteenth International Symposium on Space Terahertz Technology, ed. by W. Wild, April 2008, p. 346Google Scholar
  8. 8.
    R. Datta, J. Austermann, J.A. Beall, D. Becker, K.P. Coughlin, S.M. Duff, P.A. Gallardo, E. Grace, M. Hasselfield, S.W. Henderson, G.C. Hilton, S.P. Ho, J. Hubmayr, B.J. Koopman, J.V. Lanen, D. Li, J. McMahon, C.D. Munson, F. Nati, M.D. Niemack, L. Page, C.G. Pappas, M. Salatino, B.L. Schmitt, A. Schillaci, S.M. Simon, S.T. Staggs, J.R. Stevens, E.M. Vavagiakis, J.T. Ward, E.J. Wollack, Design and deployment of a multichroic polarimeter array on the Atacama cosmology telescope. J. Low Temp. Phys. 184(3), 568–575 (2016).  https://doi.org/10.1007/s10909-016-1553-5 ADSCrossRefGoogle Scholar
  9. 9.
    R. Datta, The First Multichroic Receiver and Results from ACTPol. Ph.D. thesis, University of Michigan (2016)Google Scholar
  10. 10.
    J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. App. Phys. Lett. 92(15), 152505 (2008).  https://doi.org/10.1063/1.2906373 ADSCrossRefGoogle Scholar
  11. 11.
    J. Gao, M. Daal, J.M. Martinis, A. Vayonakis, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, A semiempirical model for two-level system noise in superconducting microresonators. Appl. Phys. Lett. 92(21), 212504 (2008).  https://doi.org/10.1063/1.2937855 ADSCrossRefGoogle Scholar
  12. 12.
    R.M.J. Janssen, J.J.A. Baselmans, A. Endo, L. Ferrari, S.J.C. Yates, A.M. Baryshev, T.M. Klapwijk, Performance of hybrid NbTiN-Al microwave kinetic inductance detectors as direct detectors for sub-millimeter astronomy. Proc. SPIE 9153, 91530T (2014).  https://doi.org/10.1117/12.2055537 ADSCrossRefGoogle Scholar
  13. 13.
    S.J.C. Yates, J.J.A. Baselmans, A. Endo, R.M.J. Janssen, L. Ferrari, P. Diener, A. Baryshev, Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors. Appl. Phys. Lett. 99(7), 073505 (2011).  https://doi.org/10.1063/1.3624846 ADSCrossRefGoogle Scholar
  14. 14.
    S.M. Duff, J. Austermann, J.A. Beall, D. Becker, R. Datta, P.A. Gallardo, S.W. Henderson, G.C. Hilton, S.P. Ho, J. Hubmayr, B.J. Koopman, D. Li, J. McMahon, F. Nati, M.D. Niemack, C.G. Pappas, M. Salatino, B.L. Schmitt, S.M. Simon, S.T. Staggs, J.R. Stevens, J. Van Lanen, E.M. Vavagiakis, J.T. Ward, E.J. Wollack, Advanced ACTPol multichroic polarimeter array fabrication process for 150 mm wafers. J. Low Temp. Phys. 184(3), 634–641 (2016).  https://doi.org/10.1007/s10909-016-1576-y ADSCrossRefGoogle Scholar
  15. 15.
    J. Zmuidzinas, Superconducting microresonators: physics and applications. Annu. Rev. Condens. Matter Phys. 3(1), 169–214 (2012).  https://doi.org/10.1146/annurev-conmatphys-020911-125022 CrossRefGoogle Scholar
  16. 16.
    M.S. Khalil, M.J.A. Stoutimore, F.C. Wellstood, K.D. Osborn, An analysis method for asymmetric resonator transmission applied to superconducting devices. J. Appl. Phys. 111(5), 054510 (2012).  https://doi.org/10.1063/1.3692073 ADSCrossRefGoogle Scholar
  17. 17.
    H. McCarrick, G. Jones, B.R. Johnson, M.H. Abitbol, P.A.R. Ade, S. Bryan, P. Day, T. Essinger-Hileman, D. Flanigan, H.G. Leduc, M. Limon, P. Mauskopf, A. Miller, C. Tucker, Design and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry. A&A 610, A45 (2018).  https://doi.org/10.1051/0004-6361/201732044 ADSCrossRefGoogle Scholar
  18. 18.
    D. Flanigan, H. McCarrick, G. Jones, B.R. Johnson, M.H. Abitbol, P. Ade, D. Araujo, K. Bradford, R. Cantor, G. Che, P. Day, S. Doyle, C.B. Kjellstrand, H. Leduc, M. Limon, V. Luu, P. Mauskopf, A. Miller, T. Mroczkowski, C. Tucker, J. Zmuidzinas, Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors. Appl. Phys. Lett. 108(8), 083504 (2016).  https://doi.org/10.1063/1.4942804 ADSCrossRefGoogle Scholar
  19. 19.
    D. Li, J.E. Austermann, J.A. Beall, D.T. Becker, S.M. Duff, P.A. Gallardo, S.W. Henderson, G.C. Hilton, S.-P. Ho, J. Hubmayr, B.J. Koopman, J.J. McMahon, F. Nati, M.D. Niemack, C.G. Pappas, M. Salatino, B.L. Schmitt, S.M. Simon, S.T. Staggs, J. Lanen, J.T. Ward, E.J. Wollack, AlMn transition edge sensors for advanced ACTPol. J. Low Temp. Phys. 184(1), 66–73 (2016).  https://doi.org/10.1007/s10909-016-1526-8 ADSCrossRefGoogle Scholar
  20. 20.
    G. Jones, B.R. Johnson, M.H. Abitbol, P.A.R. Ade, S. Bryan, H.-M. Cho, P. Day, D. Flanigan, K.D. Irwin, D. Li, P. Mauskopf, H. McCarrick, A. Miller, Y.R. Song, C. Tucker, High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz. Appl. Phys. Lett. 110(22), 222601 (2017).  https://doi.org/10.1063/1.4984105 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. R. Johnson
    • 1
  • D. Flanigan
    • 1
  • M. H. Abitbol
    • 1
  • P. A. R. Ade
    • 2
  • S. Bryan
    • 3
  • H.-M. Cho
    • 7
  • R. Datta
    • 5
    • 8
  • P. Day
    • 6
  • S. Doyle
    • 2
  • K. Irwin
    • 4
    • 7
  • G. Jones
    • 1
  • D. Li
    • 7
  • P. Mauskopf
    • 3
  • H. McCarrick
    • 1
  • J. McMahon
    • 5
  • A. Miller
    • 1
  • G. Pisano
    • 2
  • Y. Song
    • 4
  • H. Surdi
    • 3
  • C. Tucker
    • 2
  1. 1.Department of PhysicsColumbia UniversityNew YorkUSA
  2. 2.School of Physics and AstronomyCardiff UniversityCardiffUK
  3. 3.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  4. 4.Department of PhysicsStanford UniversityStanfordUSA
  5. 5.Department of PhysicsUniversity of MichiganAnn ArborUSA
  6. 6.NASAJet Propulsion LabPasadenaUSA
  7. 7.SLAC National Accelerator LaboratoryMenlo ParkUSA
  8. 8.NASAGoddard Space Flight CenterGreenbeltUSA

Personalised recommendations