Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 618–625 | Cite as

Readout of X-ray Pulses from a Single-pixel TES Microcalorimeter with Microwave Multiplexer Based on SQUIDs Directly Coupled to Resonators

  • Y. Nakashima
  • F. Hirayama
  • S. Kohjiro
  • H. Yamamori
  • S. Nagasawa
  • A. Sato
  • T. Irimatsugawa
  • H. Muramatsu
  • T. Hayashi
  • N. Y. Yamasaki
  • K. Mitsuda
Article

Abstract

We have first demonstrated the cooperation between an X-ray TES and a directly coupled microwave SQUID multiplexer (D-coup. MW-Mux) in which SQUIDs are directly coupled to resonators. Using D-coup. MW-Mux, we successfully detected the X-ray pulses from a single-pixel TES and evaluated the energy resolution of 11.8 eV FWHM at 5.9 keV. We found this preliminary energy resolution is attributed to non-optimum bias point of the present TES, which can be improved by the future reduction of readout noise.

Keywords

Transition edge sensor Microwave SQUID multiplexing X-ray microcalorimeter 

Notes

Acknowledgements

This work was supported by “JSPS KAKENHI Grant Numbers JP15H02251 and 26220703.” The microwave SQUID multiplexer was fabricated in the clean room for analog–digital superconductivity (CRAVITY) of National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba, Japan. We would like to thank Kazuhiro Sakai (NASA/GSFC) for providing the \(250\,\mathrm {nH}\) inductor chips that have been used in this work.

References

  1. 1.
    T. Ohashi, Y. Ishisaki, Y. Ezoe, Y. Tawara, K. Mitsuda, N.Y. Yamasaki, Y. Takei, SPIE. 8443, 844319 (2012).  https://doi.org/10.1117/12.926097 ADSCrossRefGoogle Scholar
  2. 2.
    J.A.B. Mates, G. Hilton, K. Irwin, L. Vale, K. Lehnert, Appl. Phys. Lett. 92, 023514 (2008).  https://doi.org/10.1063/1.2803852 ADSCrossRefGoogle Scholar
  3. 3.
    S. Kohjiro, F. Hirayama, H. Yamamori, S. Nagasawa, D. Fukuda, M. Hidaka, J. Appl. Phys. 115, 223902 (2014).  https://doi.org/10.1063/1.4882118 ADSCrossRefGoogle Scholar
  4. 4.
    S. Kempf, M. Wegner, A. Fleischmann, L. Gastaldo, F. Herrmann, M. Papst, D. Richter, C. Enss, AIP Adv. 7, 015007 (2017).  https://doi.org/10.1063/1.4973872 ADSCrossRefGoogle Scholar
  5. 5.
    J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015).  https://doi.org/10.1088/0953-2048/28/8/084003 ADSCrossRefGoogle Scholar
  6. 6.
    J.A.B. Mates, K.D. Irwin, L.R. Vale, G.C. Hilton, J. Gao, K.W. Lehnert, J. Low Temp. Phys. 167, 707–712 (2012).  https://doi.org/10.1007/s10909-012-0518-6 ADSCrossRefGoogle Scholar
  7. 7.
    F. Hirayama, S. Kohjiro, D. Fukuda, H. Yamamori, S. Nagasawa, M. Hidaka, IEEE Trans. Appl. Supercond. 23, 2500405 (2013).  https://doi.org/10.1109/TASC.2012.2237474 CrossRefGoogle Scholar
  8. 8.
    Y. Nakashima, F. Hirayama, S. Kohjiro, H. Yamamori, S. Nagasawa, N.Y. Yamasaki, K. Mitsuda, IEICE Electron. Express 14, 20170271 (2017).  https://doi.org/10.1587/elex.14.20170271 CrossRefGoogle Scholar
  9. 9.
    J.A.B. Mates, D.T. Becker, D.A. Bennett, B.J. Dober, J.D. Gard, J.P. Hays-Wehle, J.W. Fowler, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 111, 062601 (2017).  https://doi.org/10.1063/1.4986222 ADSCrossRefGoogle Scholar
  10. 10.
    H. Muramatsu, T. Hayashi, K. Maehisa, Y. Nakashima, T. Nakayama, T. Kuroiwa, N.Y. Yamasaki, K. Mitsuda, J. Low Temp. Phys., in this special issueGoogle Scholar
  11. 11.
    G. Hölzer, M. Fritsch, M. Deutsch, J. Härtwig, E. Förster, Phys. Rev. A 56, 4554 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    H. Yoshitake, Y. Ezoe, T. Yoshino, K. Mukai, K. Ishikawa, K. Mitsuda, N.Y. Yamasaki, Y. Ishisaki, H. Akamatsu, R. Maeda, T. Takano, IEEE Trans. Appl. Supercond. 19, 456–459 (2009).  https://doi.org/10.1109/TASC.2009.2019227 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. Nakashima
    • 1
    • 2
  • F. Hirayama
    • 2
  • S. Kohjiro
    • 2
  • H. Yamamori
    • 2
  • S. Nagasawa
    • 2
  • A. Sato
    • 2
  • T. Irimatsugawa
    • 2
    • 3
  • H. Muramatsu
    • 1
  • T. Hayashi
    • 1
  • N. Y. Yamasaki
    • 1
  • K. Mitsuda
    • 1
  1. 1.ISAS/JAXASagamiharaJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.The Graduate School of EngineeringUniversity of TokyoBunkyoJapan

Personalised recommendations