Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 633–647 | Cite as

Low-Temperature Detectors for CMB Imaging Arrays

  • J. Hubmayr
  • J. E. Austermann
  • J. A. Beall
  • D. T. Becker
  • B. Dober
  • S. M. Duff
  • J. Gao
  • G. C. Hilton
  • C. M. McKenney
  • J. N. Ullom
  • J. Van Lanen
  • M. R. Vissers
Article
  • 248 Downloads

Abstract

We review advances in low-temperature detector (LTD) arrays for cosmic microwave background (CMB) polarization experiments, with a particular emphasis on imaging arrays. We briefly motivate the science case, which has spurred a large number of independent experimental efforts. We describe the challenges associated with CMB polarization measurements, and how these challenges impact LTD design. Key aspects of an ideal CMB polarization imaging array are developed and compared to the current state of the art. These aspects include dual-polarization sensitivity, background-limited detection over a 10:1 bandwidth ratio, and frequency-independent angular responses. Although existing technology lacks all of this capability, today’s CMB imaging arrays achieve many of these ideals and are highly advanced superconducting integrated circuits. Deployed arrays map the sky with pixels that contain elements for beam formation, polarization diplexing, passband definition in multiple frequency channels, and bolometric sensing. Several detector architectures are presented. We comment on the implementation of both transition-edge sensor bolometers and microwave kinetic inductance detectors for CMB applications. Lastly, we discuss fabrication capability in the context of next-generation instruments that call for \(\sim 10^6\) sensors.

Keywords

CMB Bolometer TES MKID Transition-edge sensor mm-wave Polarimeter 

Notes

Acknowledgements

We thank Lyman Page, Roger O’Brient, Adam Anderson, and Kam Arnold for figure contributions.

References

  1. 1.
    Planck Collaboration, Astron. Astrophys. 571 (2014)Google Scholar
  2. 2.
    T. Matsumura et al., J. Low Temp. Phys. 176, 5–6 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Challinor, Proc. Int. Astron. Union 8, S288 (2012)CrossRefGoogle Scholar
  4. 4.
    K.N. Abazajian et al. (2016). arXiv:1610.02743
  5. 5.
    M. Kamionkowski, E.D. Kovetz, Ann. Rev. Astron. Astrophys. 54 (2016). arXiv:1510.06042 ADSCrossRefGoogle Scholar
  6. 6.
    F. Finelli et al., J. Cosmol. Astropart. Phys. 4, 016 (2018). arXiv:1612.08270 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Di Valentino et al. J. Cosmol. Astropart. Phys. 4 (2018). arXiv:1612.00021
  8. 8.
    A. Challinor et al. J. Cosmol. Astropart. Phys. 4 (2018). arXiv:1707.02259
  9. 9.
    J.-B. Melin et al. J. Cosmol. Astropart. Phys. 4 (2018). arXiv:1703.10456
  10. 10.
    U. Seljak, Astrophys. J. 482, 1 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. Lett. 78, 11 (1997)CrossRefGoogle Scholar
  12. 12.
    U. Seljak, M. Zaldarriaga, Phys. Rev. Lett. 78, 11 (1997)CrossRefGoogle Scholar
  13. 13.
    K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection (Springer, Berlin, 2005), pp. 63–150Google Scholar
  14. 14.
    P.K. Day et al., Nature 425, 817 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J. Baselmans, J. Low Temp. Phys. 167, 3–4 (2012)Google Scholar
  16. 16.
    Simons Observatory. https://simonsobservatory.org/. Accessed 1 Aug 2017
  17. 17.
    J.A. Grayson et al. in SPIE Conference Series, vol. 9914 (2016). arxiv:1607.04668
  18. 18.
    Y.-P. Li et al. (2017). arXiv:1709.09053
  19. 19.
    M.H. Abitbol et al. (2017). arXiv:1706.02464
  20. 20.
    Planck Collaboration, Astron. Astrophys. 594 A13 (2016)Google Scholar
  21. 21.
    T. Louis et al., J. Cosmol. Astropart. Phys. 2017, 06 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Keisler et al., Astrophys. J. 807, 2 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Crites et al., Astrophys. J. 805, 1 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    D. Hanson et al., Phys. Rev. Lett. 111(14), 141301 (2013). arXiv:1307.5830 ADSCrossRefGoogle Scholar
  25. 25.
    P.A. Ade et al., Phys. Rev. Lett. 116, 3 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Ade et al., Astrophys. J. 794, 2 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Ade et al. (2017). arXiv:1705.02907
  28. 28.
    D. O’Dea, A. Challinor, B.R. Johnson, Mon. Not. R. Astron Soc. 376, 4 (2007)Google Scholar
  29. 29.
    M. Shimon et al., Phys. Rev. D 77, 8 (2008)CrossRefGoogle Scholar
  30. 30.
    P.F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE Press, New York, 1998)Google Scholar
  31. 31.
    J.W. Lamb, Int. J. Infrared Millim. Waves 17, 12 (1996)Google Scholar
  32. 32.
    M. Remazeilles et al., J. Cosmol. Astropart. Phys. 2018, 04 (2018)CrossRefGoogle Scholar
  33. 33.
    Planck Collaboration, Astron. Astrophys. 594, A10 (2016)Google Scholar
  34. 34.
    C.L. Kuo et al. in SPIE Conference Series, vol. 7020 (2008). arXiv:0908.1464
  35. 35.
    R. O’Brient et al. in SPIE Conference Series, vol. 8452 (2012). arXiv:1208.1247
  36. 36.
    K. Yoon et al. in AIP Conference Proceedings, vol. 1185. AIP (2009)Google Scholar
  37. 37.
    D.T. Chuss et al., J. Low Temp. Phys. 167, 5–6 (2012)CrossRefGoogle Scholar
  38. 38.
    K. Arnold et al. in SPIE Conference Series, vol. 8452 (2012). arXiv:1210.7877
  39. 39.
    J. Zmuidzinas, Appl. Opt. 42, 25 (2003)CrossRefGoogle Scholar
  40. 40.
    R.W. Boyd, Infrared Phys. 22, 3 (1982)CrossRefGoogle Scholar
  41. 41.
    J. Errard et al., J. Cosmol. Astropart. Phys. 2016, 03 (2016)CrossRefGoogle Scholar
  42. 42.
    Planck HFI Core Team, Astron. Astrophys. 536, A4 (2011). arXiv:1101.2039
  43. 43.
    J. Delabrouille et al., J. Cosmol. Astropart. Phys. 4, 014 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    R. Gualtieri et al., J. Low Temp. Phys. 184, 3–4 (2016)CrossRefGoogle Scholar
  45. 45.
    P.C. Nagler et al. (2016). arXiv:1611.04466
  46. 46.
    E. Grace et al., in SPIE Conference Series 9153 (2014)Google Scholar
  47. 47.
    R.J. Thornton et al., Astrophys. J. Suppl. Ser. 227 (2016). arXiv:1605.06569
  48. 48.
    P.A. Ade et al., Astrophys. J. 792, 1 (2014)CrossRefGoogle Scholar
  49. 49.
    J.E. Austermann et al., in SPIE Conference Series, vol. 8452 (2012). arXiv:1210.4970
  50. 50.
    P.A. Ade et al., Astrophys. J. 811, 2 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    K. Arnold et al., in SPIE Conference Series, vol. 7741 (2010)Google Scholar
  52. 52.
    R. Datta et al., J. Low Temp. Phys. 176 (2014). arXiv:1401.8029
  53. 53.
    J. Hubmayr et al., 26th Int. ISSTT (2015)Google Scholar
  54. 54.
    A. Suzuki et al., J. Low Temp. Phys. 167, 5–6 (2012)CrossRefGoogle Scholar
  55. 55.
    R. Datta et al., J. Low Temp. Phys. 184 (2016). arXiv:1510.07797
  56. 56.
    S. Choi et al., J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1982-4
  57. 57.
    K. Crowley et al., J. Low Temp. Phys., Submitted (2018)Google Scholar
  58. 58.
    S.-P. P. Ho et al., in SPIE Conference Series, vol. 9914 (2017)Google Scholar
  59. 59.
    K.T. Crowley et al., in SPIE Conference Series, vol. 9914 (2016)Google Scholar
  60. 60.
    A.J. Anderson et al., J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-2007-z
  61. 61.
    K. Arnold et al., in SPIE Conference Series, vol. 9153 (2014)Google Scholar
  62. 62.
    J. McMahon et al., J. Low Temp. Phys. 167, 879–884 (2012). arXiv:1201.4124 ADSCrossRefGoogle Scholar
  63. 63.
    J. Hubmayr et al., in SPIE Conference Series, vol. 9914 (2016). arXiv:1606.09396
  64. 64.
    B. Westbrook et al., J. Low Temp. Phys. 184, 1–2 (2016)CrossRefGoogle Scholar
  65. 65.
    C. Posada et al., Superconduct. Sci. Technol. 28, 9 (2015)CrossRefGoogle Scholar
  66. 66.
    Z. Pan et al., J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1935-y
  67. 67.
    M.J. Griffin, J.J. Bock, W.K. Gear, Appl. Opt. 41, 31 (2002)CrossRefGoogle Scholar
  68. 68.
    A. Cukierman et al., Appl. Phys. Lett. 112, 132601 (2018)ADSCrossRefGoogle Scholar
  69. 69.
    S.-F. Lee et al., Appl. Opt. 37, 16 (1998)Google Scholar
  70. 70.
    J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 1 (2012)CrossRefGoogle Scholar
  71. 71.
    S.R. Golwala et al., in SPIE Conference Series, vol. 8452 (2012). arxiv:1211.0595
  72. 72.
    A. Catalano et al., Astron. Astrophys. 569 (2014). arXiv:1402.0260
  73. 73.
    R. Adam et al., Astron. Astrophys. 609 (2018). arXiv:1707.00908
  74. 74.
    S. Oguri et al., J. Low Temp. Phys. 184 (2016)Google Scholar
  75. 75.
    B.R. Johnson et al. (2017). arXiv:1711.02523
  76. 76.
    Q.Y. Tang et al. (2017). arXiv:1710.11255
  77. 77.
    A. Dominjon et al., in 2017 16th International Superconductive Electronics Conference (ISEC) (2017)Google Scholar
  78. 78.
    N. Galitzki et al., J. Astro. Inst. 3, 1440001 (2014). arXiv:1409.7084 CrossRefGoogle Scholar
  79. 79.
    A. Lowitz et al., J. Low Temp. Phys. 176, 3–4 (2014)CrossRefGoogle Scholar
  80. 80.
    J.C. Mather, Appl. Opt. 21, 6 (1982)CrossRefGoogle Scholar
  81. 81.
    P. De Visser et al., Phys. Rev. Lett. 106, 16 (2011)CrossRefGoogle Scholar
  82. 82.
    P.J. de Visser et al., J. Low Temp. Phys. 167, 3 (2012)CrossRefGoogle Scholar
  83. 83.
    D. Flanigan et al., Appl. Phys. Lett. 108, 083504 (2016). arXiv:1510.06609
  84. 84.
    T. Guruswamy, D. Goldie, S. Withington, Superconduct. Sci. Technol. 27, 5 (2014)CrossRefGoogle Scholar
  85. 85.
    P. De Visser et al., Appl. Phys. Lett. 106, 25 (2015)CrossRefGoogle Scholar
  86. 86.
    O. Quaranta et al., Superconduct. Sci. Technol. 26, 10 (2013)CrossRefGoogle Scholar
  87. 87.
    A. Miceli et al., J. Low Temp. Phys. 176, 3 (2014)CrossRefGoogle Scholar
  88. 88.
    B.A. Steinbach et al. (2018). arXiv:1803.06413
  89. 89.
    J. Gao et al., Appl. Phys. Lett. 92, 21 (2008)Google Scholar
  90. 90.
    B.R. Johnson et al. (2016). arXiv:1607.03796
  91. 91.
    C. Ji et al., in SPIE Conference Series 9153 (2014)Google Scholar
  92. 92.
    A.A. Fraisse et al., J. Cos. Astro. Phys. 4 (2013). arxiv:1106.3087
  93. 93.
    Z. Staniszewski et al., J. Low Temp. Phys. 167 (2012)Google Scholar
  94. 94.
    Z. Ahmed et al., in SPIE Conference Series 9153 (2014). arXiv:1407.5928
  95. 95.
    H. Hui et al., in SPIE Conference Series, vol. 10708 (2018)Google Scholar
  96. 96.
    H. Li et al. (2018). arXiv:1710.03047
  97. 97.
    S. Duff et al., J. Low Temp. Phys. 184, 3–4 (2016)CrossRefGoogle Scholar
  98. 98.
    S.K. Choi et al. (2018). arXiv:1711.04841
  99. 99.
    A.S. Bergman et al. (2017). arXiv:1711.04169

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2018

Authors and Affiliations

  • J. Hubmayr
    • 1
  • J. E. Austermann
    • 1
  • J. A. Beall
    • 1
  • D. T. Becker
    • 1
  • B. Dober
    • 1
  • S. M. Duff
    • 1
  • J. Gao
    • 1
  • G. C. Hilton
    • 1
  • C. M. McKenney
    • 1
  • J. N. Ullom
    • 1
  • J. Van Lanen
    • 1
  • M. R. Vissers
    • 1
  1. 1.Quantum Sensors GroupNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations