Journal of Low Temperature Physics

, Volume 193, Issue 1–2, pp 12–20 | Cite as

Graphene Nanoribbon Superconductor

  • Hamze MousaviEmail author
  • Marek Grabowski


The possibility of the s-wave superconductive state in armchair graphene nanoribbons is studied within the attractive Hubbard model, standard BCS theory, and Green’s function approach. Bogoliubov de Gennes equations are derived for this system in the singlet state. A nonzero critical temperature is found which depends on the width of the system. This critical temperature decreases as the width of the system increases and for sufficiently large widths, its value reaches a constant amount which could be taken as the critical temperature of the graphene sheet. The critical temperature also depends on band-filling which, around half band-filling, shows a maximum. However, at half-filling, it drops to a lower value less than its maximum.


Graphene nanoribbons Hubbard model Superconductive state Critical temperature 



This work was partially supported by the UCCS BioFrontiers Center.


  1. 1.
    Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    N. Murata, J. Haruyama, J. Reppert, A.M. Rao, T. Koretsune, S. Saito, M. Matsudaira, Y. Yagi, Phys. Rev. Lett. 101, 027002 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    K. Tanigaki, T.W. Ebbesen, S. Saito, J. Mizuki, J.S. Tsai, Y. Shimakawa, Y. Kubo, S. Kuroshiima, Nature 352, 222 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Mel’nik, N.J. Curro, J.D. Thompson, S.M. Stishov, Nature 428, 542 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    P. Esquinazi, Pap. Phys. 5, 050007 (2013)Google Scholar
  6. 6.
    P. Esquinazi, T.T. Heikkila, Y.V. Lysogorskiy, D.A. Tayurskii, G.E. Volovik, JETP Lett. 100, 336 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A. Ballestar, T.T. Heikkilä, P. Esquinazi, Supercond. Sci. Technol. 27, 115014 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    C.E. Precker, P.D. Esquinazi, A. Champi, J.B. Quiquia, M. Zoraghi, S.M. Landin, A. Setzer, W. Böhlmann, D. Spemann, J. Meijer, T. Muenster, O. Baehre, G. Kloess, H. Beth, New J. Phys. 18, 113041 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    M. Stiller, P.D. Esquinazi, J.B. Quiquia, C.E. Precker, J. Low Temp. Phys. 191, 105 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    T.T. Heikkilä, G.E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, in Basic Physics of Functionalized Graphite, ed. by P. Esquinazi (Springer, 2016)Google Scholar
  11. 11.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    A. Di Bernardo, O. Millo, M. Barbone, H. Alpern, Y. Kalcheim, U. Sassi, A.K. Ott, D. De Fazio, D. Yoon, M. Amado, A.C. Ferrari, J. Linder, J.W.A. Robinson, Nat. Commun. 8, 14024 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    G. Profeta, M. Calandra, F. Mauri, Nat. Phys. 8, 131 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Liu, H. Jiang, C. Xie, AIP Adv. 2, 041405 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    H. Mousavi, Phys. Lett. A 374, 2953 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H. Mousavi, Commun. Theor. Phys. 54, 753 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    B. Uchoa, A.H.C. Neto, Phys. Rev. Lett. 98, 146801 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P.J. Herrero, Nature 556, 43 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D.S. Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, P.J. Herrero, Nature 556, 80 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    G. Larkins, Y. Vlasov, K. Holland, Supercond. Sci. Technol. 29, 015015 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Z.K. Tang, L. Zhang, N. Wang, X.X. Zhang, G.H. Wen, G.D. Li, J.N. Wang, C.T. Chan, P. Sheng, Science 292, 2462 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinoharaet, Phys. Rev. Lett. 96, 057001 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    C.H. Wong, E.A. Buntov, M.B. Guseva, R.E. Kasimova, V.N. Rychkov, A.F. Zatsepin, Carbon 125, 509 (2017)CrossRefGoogle Scholar
  24. 24.
    W. Shi, Z. Wang, Q. Zhang, Y. Zheng, C. Ieong, M. He, R. Lortz, Y. Cai, N. Wang, T. Zhang, H. Zhang, Z. Tang, P. Sheng, H. Muramatsu, Y.A. Kim, M. Endo, P.T. Araujo, M.S. Dresselhaus, Sci. Rep. 2, 625 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    H. Mousavi, J. Supercond. Nov. Magn. 26, 2905 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Ferrier, A. Kasumov, R. Deblock, S. Guéron, H. Bouchiat, J. Phys. D 43, 374003 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Mousavi, H. Rezania, Mod. Phys. Lett. B 24, 2947 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A. Celis, M.N. Nair, A.T. Ibrahimi, E.H. Conrad, C. Berger, W.A. De Heer, A. Tejeda, J. Phys. D 14, 143001 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    H. Mousavi, J. Khodadadi, Superlatt. Microstruct. 88, 434 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    H. Mousavi, J. Khodadadi, J. Moradi Kurdestany, M. Grabowski, Physica E 85, 248 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    T. Ma, F. Yang, Z. Huang, H.Q. Lin, Sci. Rep. 7, 19 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Q. Liang, J. Dong, Nanotechnology 19, 355706 (2008)CrossRefGoogle Scholar
  33. 33.
    Q.F. Sun, C. Xie, J. Phys. Condens. Matter 21, 344204 (2009)CrossRefGoogle Scholar
  34. 34.
    A.G. Moghaddam, M. Zareyan, Appl. Phys. A 89, 579 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    K.S. Chen, S. Pathak, S.X. Yang, S.Q. Su, D. Galanakis, K. Mikelsons, M. Jarrell, J. Moreno, Phys. Rev. B 84, 245107 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Superconductivity of Metals and Alloys, P.G. De Gennes, Translated by P.A. Pincus (Westview Press, 1999)Google Scholar
  38. 38.
    G.D. Mahan, Many Particle Physics, 3rd edn. (Kluwer Academic/Plenum Publishers, New York, 2000)CrossRefGoogle Scholar
  39. 39.
    H.S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, New York, 2011)Google Scholar
  40. 40.
    H. Mousavi, J. Khodadadi, Appl. Phys. A 122, 14 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    H. Mousavi, S. Jalilvand, J. Moradi Kurdestany, M. Grabowski, Physica E 94, 87 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran
  2. 2.Department of PhysicsUniversity of ColoradoColorado SpringsUSA

Personalised recommendations