Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 5–6, pp 1057–1065 | Cite as

SPT-3G: A Multichroic Receiver for the South Pole Telescope

  • A. J. Anderson
  • P. A. R. Ade
  • Z. Ahmed
  • J. E. Austermann
  • J. S. Avva
  • P. S. Barry
  • R. Basu Thakur
  • A. N. Bender
  • B. A. Benson
  • L. E. Bleem
  • K. Byrum
  • J. E. Carlstrom
  • F. W. Carter
  • T. Cecil
  • C. L. Chang
  • H. M. Cho
  • J. F. Cliche
  • T. M. Crawford
  • A. Cukierman
  • E. V. Denison
  • T. de Haan
  • J. Ding
  • M. A. Dobbs
  • D. Dutcher
  • W. Everett
  • A. Foster
  • R. N. Gannon
  • A. Gilbert
  • J. C. Groh
  • N. W. Halverson
  • A. H. Harke-Hosemann
  • N. L. Harrington
  • J. W. Henning
  • G. C. Hilton
  • G. P. Holder
  • W. L. Holzapfel
  • N. Huang
  • K. D. Irwin
  • O. B. Jeong
  • M. Jonas
  • T. Khaire
  • L. Knox
  • A. M. Kofman
  • M. Korman
  • D. Kubik
  • S. Kuhlmann
  • N. Kuklev
  • C. L. Kuo
  • A. T. Lee
  • E. M. Leitch
  • A. E. Lowitz
  • S. S. Meyer
  • D. Michalik
  • J. Montgomery
  • A. Nadolski
  • T. Natoli
  • H. Nguyen
  • G. I. Noble
  • V. Novosad
  • S. Padin
  • Z. Pan
  • J. Pearson
  • C. M. Posada
  • A. Rahlin
  • C. L. Reichardt
  • J. E. Ruhl
  • L. J. Saunders
  • J. T. Sayre
  • I. Shirley
  • E. Shirokoff
  • G. Smecher
  • J. A. Sobrin
  • A. A. Stark
  • K. T. Story
  • A. Suzuki
  • Q. Y. Tang
  • K. L. Thompson
  • C. Tucker
  • L. R. Vale
  • K. Vanderlinde
  • J. D. Vieira
  • G. Wang
  • N. Whitehorn
  • V. Yefremenko
  • K. W. Yoon
  • M. R. Young
Article

Abstract

A new receiver for the South Pole Telescope, SPT-3G, was deployed in early 2017 to map the cosmic microwave background at 95, 150, and 220 GHz with \(\sim \) 16,000 detectors, 10 times more than its predecessor SPTpol. The increase in detector count is made possible by lenslet-coupled trichroic polarization-sensitive pixels fabricated at Argonne National Laboratory, new 68\(\times \) frequency-domain multiplexing readout electronics, and a higher-throughput optical design. The enhanced sensitivity of SPT-3G will enable a wide range of results including constraints on primordial B-mode polarization, measurements of gravitational lensing of the CMB, and a galaxy cluster survey. Here we present an overview of the instrument and its science objectives, highlighting its measured performance and plans for the upcoming 2018 observing season.

Keywords

CMB Instrumentation Polarimetry SPT-3G 

Notes

Acknowledgements

The South Pole Telescope is supported by the National Science Foundation (NSF) through Grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, and the Kavli Foundation and the Gordon and Betty Moore Foundation Grant GBMF 947. Work at Argonne National Laboratory, including Laboratory Directed Research and Development support and Use of the Center for Nanoscale Materials, a US Department of Energy, Office of Science (DOE-OS) user facility, was supported under Contract No. DE-AC02-06CH11357. We acknowledge R. Divan, L. Stan, C.S. Miller, and V. Kutepova for supporting our work in the Argonne Center for Nanoscale Materials. Work at Fermi National Accelerator Laboratory, a DOE-OS, HEP User Facility managed by the Fermi Research Alliance, LLC, was supported under Contract No. DE-AC02-07CH11359. NWH acknowledges support from NSF CAREER Grant AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program.

References

  1. 1.
    U. Seljak, M. Zaldarriaga, Phys. Rev. Lett. 78, 2054–2057 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. Lett. 78, 2058–2061 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    K.N. Abazajian et al., Astropart. Phys. 63, 55–65 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    W. Hu, T. Okamoto, Astrophys. J. 574, 566–574 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    A. Lewis, A. Challinor, Phys. Rept. 429, 1–65 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    K.N. Abazajian et al., Astropart. Phys. 63, 66–80 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    A.T. Crites et al., Astrophys. J. 805(1), 36 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    R.J. Thornton et al., Astrophys. J. Suppl. 227(2), 21 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Kermish et al., Proc. SPIE Int. Soc. Opt. Eng. 8452, 1C (2012)Google Scholar
  10. 10.
    B.A. Benson et al., Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531P (2014)Google Scholar
  11. 11.
    G. Simard, D. Hanson, G. Holder, Astrophys. J. 807(2), 166 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A. Manzotti et al., Astrophys. J. 846, 1 (2017)CrossRefGoogle Scholar
  13. 13.
    R. Adam et al., Astron. Astrophys. 594, A1 (2016)CrossRefGoogle Scholar
  14. 14.
    K.S. Dawson et al., Astron. J. 145, 10 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    B. Flaugher et al., Astron. J. 150, 150 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    R. O’Brient et al., Appl. Phys. Lett. 102, 063506 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    C.M. Posada et al., Proc. SPIE 9914, 9914 (2016)Google Scholar
  18. 18.
    J. Ding et al., IEEE Trans. Appl. Supercond. 27(4), 2100204 (2017)CrossRefGoogle Scholar
  19. 19.
    W. B. Everett et al., J. Low Temp. Phys., this Special Issue LTD-17 PE-10 (2018)Google Scholar
  20. 20.
    F.W. Carter et al., J. Low. Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1910-7 CrossRefGoogle Scholar
  21. 21.
    R. Bhatia et al., Cryogenics 40.11 (2000), 685-691. ISSN: 0011-2275Google Scholar
  22. 22.
    J. Ding et al., J. Low. Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1907-2 CrossRefGoogle Scholar
  23. 23.
    C.M. Posada et al., J. Low. Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1924-1 CrossRefGoogle Scholar
  24. 24.
    Z. Pan et al., J. Low. Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1935-y CrossRefGoogle Scholar
  25. 25.
    J.S. Avva et al., J. Low. Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1965-5 CrossRefGoogle Scholar
  26. 26.
    K. Rotermund et al., J. Low. Temp. Phys. 184(1–2), 486–491 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    T. de Haan, G. Smecher, M. Dobbs, Proc. SPIE Int. Soc. Opt. Eng. 8452, 84520E (2012)Google Scholar
  28. 28.
    A.N. Bender et al., Proc. SPIE Int. Soc. Opt. Eng. 9914, 99141D (2016)Google Scholar
  29. 29.
    M.E. Huber et al., IEEE Trans. Appl. Supercond. 11(1), 1251 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    E.M. George et al., Proc. SPIE Int. Soc. Opt. Eng. 8452, 84521F (2012)Google Scholar
  31. 31.
    O. Jeong et al., J. Low Temp. Phys. 184(3–4), 621–626 (2016)ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • A. J. Anderson
    • 1
    • 2
  • P. A. R. Ade
    • 3
  • Z. Ahmed
    • 4
    • 5
    • 6
  • J. E. Austermann
    • 7
  • J. S. Avva
    • 8
  • P. S. Barry
    • 2
    • 9
  • R. Basu Thakur
    • 2
  • A. N. Bender
    • 2
    • 10
  • B. A. Benson
    • 1
    • 2
    • 9
  • L. E. Bleem
    • 2
    • 10
  • K. Byrum
    • 10
  • J. E. Carlstrom
    • 2
    • 9
    • 10
    • 11
    • 12
  • F. W. Carter
    • 2
    • 10
  • T. Cecil
    • 10
  • C. L. Chang
    • 2
    • 9
    • 10
  • H. M. Cho
    • 6
  • J. F. Cliche
    • 13
  • T. M. Crawford
    • 2
    • 9
  • A. Cukierman
    • 8
  • E. V. Denison
    • 7
  • T. de Haan
    • 8
  • J. Ding
    • 14
  • M. A. Dobbs
    • 13
    • 15
  • D. Dutcher
    • 2
    • 12
  • W. Everett
    • 16
  • A. Foster
    • 17
  • R. N. Gannon
    • 14
  • A. Gilbert
    • 13
  • J. C. Groh
    • 8
  • N. W. Halverson
    • 16
    • 18
  • A. H. Harke-Hosemann
    • 10
    • 19
  • N. L. Harrington
    • 8
  • J. W. Henning
    • 2
  • G. C. Hilton
    • 7
  • G. P. Holder
    • 19
    • 20
  • W. L. Holzapfel
    • 8
  • N. Huang
    • 8
  • K. D. Irwin
    • 4
    • 5
    • 6
  • O. B. Jeong
    • 8
  • M. Jonas
    • 1
  • T. Khaire
    • 14
  • L. Knox
    • 21
  • A. M. Kofman
    • 19
    • 20
  • M. Korman
    • 17
  • D. Kubik
    • 1
  • S. Kuhlmann
    • 10
  • N. Kuklev
    • 12
  • C. L. Kuo
    • 4
    • 5
    • 6
  • A. T. Lee
    • 8
    • 22
  • E. M. Leitch
    • 2
    • 9
  • A. E. Lowitz
    • 2
  • S. S. Meyer
    • 2
    • 9
    • 11
    • 12
  • D. Michalik
    • 23
  • J. Montgomery
    • 13
  • A. Nadolski
    • 19
  • T. Natoli
    • 24
  • H. Nguyen
    • 1
  • G. I. Noble
    • 13
  • V. Novosad
    • 14
  • S. Padin
    • 2
  • Z. Pan
    • 2
    • 12
  • J. Pearson
    • 14
  • C. M. Posada
    • 14
  • A. Rahlin
    • 1
    • 2
  • C. L. Reichardt
    • 25
  • J. E. Ruhl
    • 17
  • L. J. Saunders
    • 2
    • 10
  • J. T. Sayre
    • 16
  • I. Shirley
    • 8
  • E. Shirokoff
    • 2
    • 9
  • G. Smecher
    • 26
  • J. A. Sobrin
    • 2
    • 12
  • A. A. Stark
    • 27
  • K. T. Story
    • 4
    • 5
  • A. Suzuki
    • 8
    • 22
  • Q. Y. Tang
    • 2
    • 9
  • K. L. Thompson
    • 4
    • 5
    • 6
  • C. Tucker
    • 3
  • L. R. Vale
    • 7
  • K. Vanderlinde
    • 24
    • 28
  • J. D. Vieira
    • 19
    • 20
  • G. Wang
    • 10
  • N. Whitehorn
    • 8
    • 29
  • V. Yefremenko
    • 10
  • K. W. Yoon
    • 4
    • 5
    • 6
  • M. R. Young
    • 28
  1. 1.Fermi National Accelerator LaboratoryBataviaUSA
  2. 2.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoUSA
  3. 3.School of Physics and AstronomyCardiff UniversityCardiffUnited Kingdom
  4. 4.Kavli Institute for Particle Astrophysics and CosmologyStanford UniversityStanfordUSA
  5. 5.Department of PhysicsStanford UniversityStanfordUSA
  6. 6.SLAC National Accelerator LaboratoryMenlo ParkUSA
  7. 7.National Institute of Standards and TechnologyBoulderUSA
  8. 8.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  9. 9.Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoUSA
  10. 10.High-Energy Physics DivisionArgonne National LaboratoryArgonneUSA
  11. 11.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA
  12. 12.Department of PhysicsUniversity of ChicagoChicagoUSA
  13. 13.Department of PhysicsMcGill UniversityMontrealCanada
  14. 14.Material Science DivisionArgonne National LaboratoryArgonneUSA
  15. 15.CIFAR Program in Cosmology and GravityCanadian Institute for Advanced ResearchTorontoCanada
  16. 16.CASA, Department of Astrophysical and Planetary SciencesUniversity of ColoradoBoulderUSA
  17. 17.Physics DepartmentCase Western Reserve UniversityClevelandUSA
  18. 18.Department of PhysicsUniversity of ColoradoBoulderUSA
  19. 19.Astronomy DepartmentUniversity of IllinoisUrbanaUSA
  20. 20.Department of PhysicsUniversity of IllinoisUrbanaUSA
  21. 21.Department of PhysicsUniversity of CaliforniaDavisUSA
  22. 22.Physics DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  23. 23.University of ChicagoChicagoUSA
  24. 24.Dunlap Institute for Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  25. 25.School of PhysicsUniversity of MelbourneParkvilleAustralia
  26. 26.Three-Speed Logic, Inc.VancouverCanada
  27. 27.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  28. 28.Department of Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  29. 29.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations