Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 209–216 | Cite as

Josephson Effects in Frequency-Domain Multiplexed TES Microcalorimeters and Bolometers

  • L. Gottardi
  • S. J. Smith
  • A. Kozorezov
  • H. Akamatsu
  • J. van der Kuur
  • S. R. Bandler
  • M. P. Bruijn
  • J. A. Chervenak
  • J. R. Gao
  • R. H. den Hartog
  • B. D. Jackson
  • P. Khosropanah
  • A. Miniussi
  • K. Nagayoshi
  • M. Ridder
  • J. Sadleir
  • K. Sakai
  • N. Wakeham
Article

Abstract

Frequency-division multiplexing is the baseline read-out system for large arrays of superconducting transition-edge sensors (TES’s) under development for the X-ray and infrared instruments like X-IFU (Athena) and SAFARI, respectively. In this multiplexing scheme, the sensors are ac-biased at different frequencies from 1 to 5 MHz and operate as amplitude modulators. Weak superconductivity is responsible for the complex TES resistive transition, experimentally explored in great detail so far, both with dc- and ac-biased read-out schemes. In this paper, we will review the current status of our understanding of the physics of the TES’s and their interaction with the ac bias circuit. In particular, we will compare the behaviour of the TES nonlinear impedance, across the superconducting transition, for several detector families, namely: high-normal-resistance TiAu TES bolometers, low-normal-resistance MoAu TES microcalorimeters and high-normal-resistance TiAu TES microcalorimeters.

Keywords

Josephson effect Frequency-domain multiplexing Transition-edge sensors 

Notes

Acknowledgements

H.A acknowledges the support of NWO via a Veni grant. SRON is supported financially by NWO, the Netherlands Organization for Scientific Research.

References

  1. 1.
    D. Barret, Proc. SPIE, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 9905, 99052F,(2016)Google Scholar
  2. 2.
    P. Roelfsema, Proc. SPIE 9143, 9143–9154 (2014)Google Scholar
  3. 3.
    J.E. Sadleir, S.J. Smith, S.R. Bandler, J.A. Chervenak, J.R. Clem, Phys. Rev. Lett. 104, 047003 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J.E. Sadleir, S.J. Smith, S.R. Bandler, J.A. Chervenak, J.R. Clem, Phys. Rev. B 84, 184502 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Smith et al., J. Appl. Phys. 114, 074513 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    L. Gottardi et al., J. Low Temp. Phys. 167, 214 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    L. Gottardi et al., Appl. Phys. Lett. 105, 162605 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    L. Gottardi et al., IEEE Trans. Appl. Superc. 27(4), 1–4 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Sakai et al., J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-2002-4 CrossRefGoogle Scholar
  11. 11.
    A. Kozorezov et al., Appl. Phys. Lett. 99, 063503 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    K. Likharev, Rev. Mod. Phys. 51, 101 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    A. Miniussi et al., J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1974-4 CrossRefGoogle Scholar
  14. 14.
    P. Khosropanah et al., Proc. SPIE 9144, 9914-9914-5 (2016)Google Scholar
  15. 15.
    H. Akamatsu et al., J. Low Temp. Phys. 176(3–4), 591–596 (2014)ADSGoogle Scholar
  16. 16.
    N. Wakeham et al., J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1898-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Gottardi
    • 1
  • S. J. Smith
    • 2
    • 3
  • A. Kozorezov
    • 4
  • H. Akamatsu
    • 1
  • J. van der Kuur
    • 5
  • S. R. Bandler
    • 6
  • M. P. Bruijn
    • 1
  • J. A. Chervenak
    • 6
  • J. R. Gao
    • 1
    • 7
  • R. H. den Hartog
    • 1
  • B. D. Jackson
    • 5
  • P. Khosropanah
    • 1
  • A. Miniussi
    • 8
  • K. Nagayoshi
    • 1
  • M. Ridder
    • 1
  • J. Sadleir
    • 6
  • K. Sakai
    • 9
  • N. Wakeham
    • 8
  1. 1.SRON National Institute for Space ResearchUtrechtThe Netherlands
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.CRESST and University of MarylandBaltimore CountyUSA
  4. 4.Department of PhysicsLancaster UniversityLancasterUK
  5. 5.SRON Netherlands Institute for Space ResearchGroningenThe Netherlands
  6. 6.NASA Goddard Space Flight CenterGreenbeltUSA
  7. 7.Kavli Institute of NanoScience, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
  8. 8.NASA Postdoctoral ProgramUniversities Space Research Assoc.GreenbeltUSA
  9. 9.CRESST II - UMBCBaltimoreUSA

Personalised recommendations