Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 393–401 | Cite as

A Model on Heat Signal of Crystal Detector at Low Temperature

  • Jin Li
  • Inwook Kim
Article
  • 63 Downloads

Abstract

We present a model to calculate heat signal shapes from low-temperature bolometer attached to a crystal. This model is based on the elementary acoustic wave theory at low temperature and has been developed using modern Monte Carlo techniques. Physical processes in phonon propagation, such as transmission, scattering and reflection are considered. Using our model, the calculated time dependence of signal agrees with real experimental data. This model has applications in low-temperature rare event particle detectors for dark matter and neutrinos.

Keywords

Phonon physics Simulation Lattice dynamics Acoustic wave Cryogenic calorimeter 

Notes

Acknowledgements

The author would like to thank Yonghamb Kim, Juhee Lee, Chang Lee and Seungyoon Oh for useful communications. This work was supported by Project Code IBS-R016-D1.

References

  1. 1.
    H.J. Maris, J. Low Temp. Phys. 93, 355 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    D. Brandt, M. Asai, P.L. Brink et al., J. Low Temp. Phys. 167, 485 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    S.W. Leman, Rev. Sci. Instrum. 83, 091101 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    O. Weis, Z. Angew, Physik 26, 325 (1969)Google Scholar
  5. 5.
    F. Rösch, O. Weis, Z. Phys. B 27, 33 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    R. Bayrle, O. Weis, J. Low Temp. Phys. 76, 129 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    G. Müller, O. Weis, Z. Phys. B 80, 25 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    O. Weis, Z. Phys. B 34, 55 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Wolfe, Imaging Phonons (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  10. 10.
    O. Weis, Z. Phys. B 96, 525 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    F.I. Fedorov, Theory of Elastic Waves in Crystals, Ch. 8, Plenum, New York, 1968CrossRefGoogle Scholar
  12. 12.
    M. Goetze, M. Nover, O. Weis, Z. Phys. B 25, 1 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    A. Mrzyglod, O. Weis, J. Low Temp. Phys. 97, 275 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    P. Taborek, D. Goodstein, Phys. Rev. B 22, 1550 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    A. Mrzyglod, O. Weis, Z. Phys. B 97, 103–112 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    T.L. Head, M.E. Msall, Chin. J. Phys. 49, 278 (2011)Google Scholar
  17. 17.
    A.G. Every, G.L. Koos, J.P. Wolfe, Phys. Rev. B 29, 2190 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    P. Taborek, D. Goodstein, J. Phys. C 12, 4737 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    G. Müller, O. Weis, Z. Phys. B 80, 15 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    G. B. Kim, S. Choi, F. A. Danevich, et al. Adv. High Energy Phys. 2015, Article ID 817530, 7 pages, 2015Google Scholar
  21. 21.
    G. Angloher et al. [CRESST Collaboration], Eur. Phys. J. C 76(1), 25 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Underground PhysicsInstitute for Basic Science (IBS)DaejeonKorea

Personalised recommendations