Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 249–257 | Cite as

A Highly Linear Calibration Metric for TES X-ray Microcalorimeters

  • C. G. Pappas
  • J. W. Fowler
  • D. A. Bennett
  • W. B. Doriese
  • Y. I. Joe
  • K. M. Morgan
  • G. C. O’Neil
  • J. N. Ullom
  • D. S. Swetz
Article

Abstract

Transition-edge sensor X-ray microcalorimeters are usually calibrated empirically, as the most widely used calibration metric, optimal filtered pulse height (OFPH), in general has an unknown dependence on photon energy, \(E_{\gamma }\). Because the calibration function can only be measured at specific points where photons of a known energy can be produced, this unknown dependence of OFPH on \(E_{\gamma }\) leads to calibration errors and the need for time-intensive calibration measurements and analysis. A calibration metric that is nearly linear as a function of \(E_{\gamma }\) could help alleviate these problems. In this work, we assess the linearity of a physically motivated calibration metric, \(E_{\mathrm {Joule}}\). We measure calibration pulses in the range 4.5 keV \(<E_{\gamma }<\) 9.6 keV with detectors optimized for 6 keV photons to compare the linearity properties of \(E_{\mathrm {Joule}}\) to OFPH. In these test data sets, we find that \(E_{\mathrm {Joule}}\) fits a linear function an order of magnitude better than OFPH. Furthermore, calibration functions using \(E_{\mathrm {J}}\), an optimized version of \(E_{\mathrm {Joule}}\), are linear within the 2–3 eV noise of the data.

Keywords

Microcalorimeter Transition-edge sensor (TES) Detector calibration X-ray spectroscopy 

Notes

Acknowledgements

This work was supported by NIST’s Innovations in Measurement Science Program and NASA SAT NNG16PT181. C.G.P is supported by the National Research Council Post-Doctoral Fellowship. As this is a contribution of a U.S. Government agency, it is not subject to copyright in the USA.

References

  1. 1.
    J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    W.B. Doriese, P. Abbamonte, B.K. Alpert, D.A. Bennett, E.V. Denison, Y. Fang, D.A. Fischer, C.P. Fitzgerald, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, G.C. Hilton, C. Jaye, J.L. Mcchesney, L. Miaja-Avila, K.M. Morgan, Y.I. Joe, G.C. O’Neil, C.D. Reintsema, F. Rodolakis, D.R. Schmidt, H. Tatsuno, J. Uhlig, L.R. Vale, J.N. Ullom, D.S. Swetz, Rev. Sci. Instrum. 88, 053108 (2017).  https://doi.org/10.1063/1.4983316 ADSCrossRefGoogle Scholar
  3. 3.
    M.R.J. Palosaari, M. Kyhk, K.M. Kinnunen, M. Laitinen, J. Julin, J. Malm, T. Sajavaara, W.B. Doriese, J. Fowler, C. Reintsema, D. Swetz, D. Schmidt, J.N. Ullom, I.J. Maasilta, Phys. Rev. Applied 6, 024002 (2016).  https://doi.org/10.1103/PhysRevApplied.6.024002 ADSCrossRefGoogle Scholar
  4. 4.
    L. Miaja-Avila, G.C. O’Neil, Y.I. Joe, B.K. Alpert, N.H. Damrauer, W.B. Doriese, S.M. Fatur, J.W. Fowler, G.C. Hilton, R. Jimenez, C.D. Reintsema, D.R. Schmidt, K.L. Silverman, D.S. Swetz, H. Tatsuno, J.N. Ullom, Phys. Rev. X 6, 031047 (2016).  https://doi.org/10.1103/PhysRevX.6.031047 CrossRefGoogle Scholar
  5. 5.
    G.C. O’Neil, L. Miaja-Avila, Y.I. Joe, B.K. Alpert, M. Balasubramanian, D.M. Sagar, W. Doriese, J.W. Fowler, W.K. Fullagar, N. Chen, G.C. Hilton, R. Jimenez, B. Ravel, C.D. Reintsema, D.R. Schmidt, K.L. Silverman, D.S. Swetz, J. Uhlig, J.N. Ullom, J. Phys. Chem. Lett. 8, 1099 (2017).  https://doi.org/10.1021/acs.jpclett.7b00078 CrossRefGoogle Scholar
  6. 6.
    M.P. Croce, M.K. Bacrania, E.M. Bond, D.E. Dry, A.L. Klingensmith, W.A. Moody, S.P. Lamont, M.W. Rabin, J.H. Rim, J.A. Beall, D.A. Bennett, V. Kotsubo, R.D. Horansky, G.C. Hilton, D. Schmidt, J.N. Ullom, R. Cantor, IEEE Trans. Appl. Supercond. 21, 207 (2011).  https://doi.org/10.1109/TASC.2010.2096790 ADSCrossRefGoogle Scholar
  7. 7.
    T. Hashimoto, M. Bazzi, D.A. Bennett, C. Berucci, D. Bosnar, C. Curceanu, W.B. Doriese, J.W. Fowler, H. Fujioka, C. Guaraldo, F.P. Gustafsson, R. Hayakawa, R.S. Hayano, J.P. Hays-Wehle, G.C. Hilton, T. Hiraiwa, Y. Ichinohe, M. Iio, M. Iliescu, S. Ishimoto, Y. Ishisaki, K. Itahashi, M. Iwasaki, Y. Ma, H. Noda, H. Noumi, G.C. O’Neil, H. Ohnishi, S. Okada, H. Outa, K. Piscicchia, C.D. Reintsema, Y. Sada, F. Sakuma, M. Sato, D.R. Schmidt, A. Scordo, M. Sekimoto, H. Shi, D. Sirghi, F. Sirghi, K. Suzuki, D.S. Swetz, K. Tanida, H. Tatsuno, M. Tokuda, J. Uhlig, J.N. Ullom, S. Yamada, T. Yamazaki, J. Zmeskal, IEEE Trans. Appl. Supercond. 27, 2100905 (2017).  https://doi.org/10.1109/TASC.2016.2646374 CrossRefGoogle Scholar
  8. 8.
    A. Giachero, B. Alpert, D. Becker, D. Bennett, M. Biasotti, C. Brofferio, V. Ceriale, G. Ceruti, D. Corsini, P. Day, M.D. Gerone, R. Dressler, M. Faverzani, E. Ferri, J. Fowler, E. Fumagalli, G. Gallucci, J. Gard, F. Gatti, J. Hays-Wehle, S. Heinitz, G. Hilton, U. Kster, M. Lusignoli, J. Mates, S. Nisi, A. Nucciotti, A. Orlando, L. Parodi, G. Pessina, G. Pizzigoni, A. Puiu, S. Ragazzi, C. Reintsema, M.R. Gomes, D. Schmidt, D. Schumann, F. Siccardi, M. Sisti, D. Swetz, F. Terranova, J. Ullom, L. Vale, JINST 12, C02046 (2017).  https://doi.org/10.1088/1748-0221/12/02/C02046 CrossRefGoogle Scholar
  9. 9.
    L. Ravera, D. Barret, J.W.D. Herder, L. Piro, R. Cldassou, E. Pointecouteau, P. Peille, F. Pajot, M. Arnaud, C. Pigot, L. Duband, C. Cara, R.H.D. Hartog, L. Gottardi, H. Akamatsu, J.V.D. Kuur, H.J.V. Weers, J.D. Plaa, C. Macculi, S. Lotti, G. Torrioli, F. Gatti, L. Valenziano, M. Barbera, X. Barcons, M.T. Ceballos, L. Fbrega, J.M. Mas-Hesse, M.J. Page, P.R. Guttridge, R. Willingale, S. Paltani, L. Genolet, E. Bozzo, G. Rauw, E. Renotte, J. Wilms, SPIE Astronom. Telesc. + Instrum. 9144, 91442L (2014).  https://doi.org/10.1117/12.2055884 CrossRefGoogle Scholar
  10. 10.
    S.J. Smith, J.S. Adams, S.R. Bandler, G.L. Betancourt-Martinez, J.A. Chervenak, M.P. Chiao, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.E. Sadleir, K. Sakai, N.A. Wakeham, E.J. Wassell, W. Yoon, D.A. Bennett, W.B. Doriese, J.W. Fowler, G.C. Hilton, K.M. Morgan, C.G. Pappas, C.N. Reintsema, D.S. Swetz, J.N. Ullom, K.D. Irwin, H. Akamatsu, L. Gottardi, R.D. Hartog, B.D. Jackson, J.V.D. Kuur, D. Barret, P. Peille, SPIE Astronom. Telesc. + Instrum. 9905, 99052H (2016).  https://doi.org/10.1117/12.2231749 ADSCrossRefGoogle Scholar
  11. 11.
    J.A. Gaskin, M.C. Weisskopf, A. Vikhlinin, H.D. Tananbaum, S.R. Bandler, M.W. Bautz, D.N. Burrows, A.D. Falcone, F.A. Harrison, R.K. Heilmann, S. Heinz, R.C. Hopkins, C.A. Kilbourne, C. Kouveliotou, R.P. Kraft, A.V. Kravtsov, R.L. Mcentaffer, P. Natarajan, S.L. O’Dell, R. Petre, Z.R. Prieskorn, A.F. Ptak, B.D. Ramsey, P.B. Reid, A.R. Schnell, D.A. Schwartz, L.K. Townsley, UV, X-Ray, and Gamma-Ray Space Instrum. Astron. XIX 9601, 96010J (2015).  https://doi.org/10.1117/12.2190837 CrossRefGoogle Scholar
  12. 12.
    A.E. Szymkowiak, R.L. Kelley, S.H. Moseley, C.K. Stahle, J. Low Temp. Phys. 93, 281 (1993).  https://doi.org/10.1007/BF00693433 ADSCrossRefGoogle Scholar
  13. 13.
    J.W. Fowler, B.K. Alpert, W.B. Doriese, Y.-I. Joe, G.C. O’Neil, J.N. Ullom, D.S. Swetz, J. Low Temp. Phys. 184, 374 (2016).  https://doi.org/10.1007/s10909-015-1380-0 ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Fowler, B.K. Alpert, D.A. Bennett, W.B. Doriese, J.D. Gard, G.C. Hilton, L.T. Hudson, Y.-I. Joe, K.M. Morgan, G.C. O’Neil, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, C.I. Szabo, J.N. Ullom, Metrologia 54, 494 (2017).  https://doi.org/10.1088/1681-7575/aa722f ADSCrossRefGoogle Scholar
  15. 15.
    S. Bandler, E. Figueroa-Feliciano, N. Iyomoto, R. Kelley, C. Kilbourne, K. Murphy, F. Porter, T. Saab, J. Sadleir, Nucl. Instrum. Methods Phys. Res. A 559, 817–819 (2006).  https://doi.org/10.1016/j.nima.2005.12.149 ADSCrossRefGoogle Scholar
  16. 16.
    S.J. Lee, J.S. Adams, S.R. Bandler, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, F.S. Porter, J.E. Sadleir, S.J. Smith, E.J. Wassell, Appl. Phys. Lett. 107, 223503 (2015).  https://doi.org/10.1063/1.4936793 ADSCrossRefGoogle Scholar
  17. 17.
    P. Peille, M.T. Ceballos, B. Cobo, J. Wilms, S. Bandler, S.J. Smith, T. Dauser, T. Brand, R.D. Hartog, J.D. Plaa, D. Barret, J.-W.D. Herder, L. Piro, X. Barcons, E. Pointecouteau, SPIE Astronom. Telesc. + Instrum. 9905, 99055W (2016).  https://doi.org/10.1117/12.2232011 CrossRefGoogle Scholar
  18. 18.
    C. Hollerith, B. Simmnacher, R. Weiland, F.V. Feilitzsch, C. Isaila, J. Jochum, W. Potzel, J. Hhne, K. Phelan, D. Wernicke, T. May, Rev. Sci. Instrum. 77, 053105 (2006).  https://doi.org/10.1063/1.2202911 ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Fowler, C.G. Pappas, B.K. Alpert, W.B. Doriese, G.C. O’Neil, J.N. Ullom, D.S. Swetz, J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1892-5
  20. 20.
    K.D. Irwin, G.C. Hilton, transition-edge sensors. in Cryogenic Particle Detection, (2005), pp. 81–97.  https://doi.org/10.1007/10933596_3
  21. 21.
    D.A. Bennett, R.D. Horansky, A.S. Hoover, N.J. Hoteling, M.W. Rabin, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 97, 102504 (2010).  https://doi.org/10.1063/1.3486477 ADSCrossRefGoogle Scholar
  22. 22.
    W.B. Doriese, K.M. Morgan, D.A. Bennett, E.V. Denison, C.P. Fitzgerald, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, G.C. Hilton, K.D. Irwin, Y.I. Joe, J.A.B. Mates, G.C. O’Neil, C.D. Reintsema, N.O. Robbins, D.R. Schmidt, D.S. Swetz, H. Tatsuno, L.R. Vale, J.N. Ullom, J. Low Temp. Phys. 184, 389 (2016).  https://doi.org/10.1007/s10909-015-1373-z ADSCrossRefGoogle Scholar
  23. 23.
    D.A. Bennett, D.S. Swetz, R.D. Horansky, D.R. Schmidt, J.N. Ullom, J. Low Temp. Phys. 167, 102 (2012).  https://doi.org/10.1007/s10909-011-0431-4 ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.Quantum Sensors GroupNIST Boulder LaboratoriesBoulderUSA

Personalised recommendations