Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 1–2, pp 1–11 | Cite as

Temperature-Dependent Magnetic Properties of Electrodeposited CoPtP Alloy Nanowires

  • Shivani Agarwal
  • Ravi Prakash Singh
  • Manvendra Singh Khatri
Article
  • 59 Downloads

Abstract

CoPtP alloy nanowires, ~ 200 nm in diameter, have been prepared by the electrodeposition method into the pores of a porous anodic aluminum oxide template. X-ray diffraction pattern shows that the wires consist of a mixture of fcc and hcp phases with CoPt (002) and CoPt (221) texture. The coercivity was found to be 1150 Oe at 50 K and 760 Oe at 300 K, when the field was applied parallel to the wire axis. The temperature dependence of coercivity was explained by considering the magnetocrystalline anisotropy and thermal activation effect.

Keywords

CoPtP alloy Magnetic nanowires Coercivity Electrodeposition Alumina template 

References

  1. 1.
    G. Hrkac, J. Dean, D.A. Allwood, Philos. Trans. R. Soc. A 369, 3214 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    X. Kou, X. Fan, R.K. Dumas, Q. Lu, Y. Zhang, H. Zhu, X. Zhang, K. Liu, J.Q. Xiao, Adv. Mater. 23, 1393 (2011)CrossRefGoogle Scholar
  3. 3.
    R. Bellamkonda, T. Jojn, B. Mathew, M. Dcoster, H. Hegab, D. Davis, J. Micromech. Microeng. 20, 025012 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J. Heck, D. Adams, N. Belov, T.K.A. Chou, B. Kim, K. Kornelsen, Q. Maa, V. Rao, S. Severi, D. Spicer, G. Tchelepi, A. Witvrouw, Microelectron. Eng. 87, 1198 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Shamila, R. Sharif, S. Riaz, M. Ma, M.K. Rahman, X.F. Han, J. Magn. Magn. Mater. 320, 1803 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Dahmane, L. Cagnon, J. Voiron, S. Pairis, M. Bacia, L. Ortega, N. Benbrahim, A. Kadri, J. Phys. D Appl. Phys. 39, 4523 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    C. Himcinschi, R. Singh, I. Radu, A.P. Milenin, W. Erfurth, M. Reiche, U. Goesele, S.H. Christiansen, F. Muster, M. Petzold, Appl. Phys. Lett. 90, 021902 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    B.D. Terris, T. Thomson, J. Phys. D Appl. Phys. 38, R199 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    O. Kazakova, D. Brian, J.D. Holmes, Matter Mater. Phys. 74, 184413 (2006)CrossRefGoogle Scholar
  10. 10.
    P. Peinado, S. Sangiao, J.M.D. Teresa, ACS Nano 9(6), 6139 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Kim, H. Yoon, H. Lee, S. Lee, Y. Jo, S. Lee, J. Choo, B. Kim, J. Mater. Chem. C 3, 100 (2015)CrossRefGoogle Scholar
  12. 12.
    S.F. Garrido, M. Ramsteiner, G. Gao, L.A. Galves, B. Sharma, P. Corfdir, G. Calabrese, Z.S. Schiaber, C. Pfüller, A. Trampert, J.M.J. Lopes, O. Brandt, L. Geelhaar, Nano Lett. 17(9), 5213 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    H. Schloerb, V. Haehnel, M.S. Khatri, A. Srivastav, A. Kumar, L. Schultz, S. Fahler, Phys. Stat. Soli. B 274(10), 2364 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    F. Muench, M. Oezaslan, T. Seidl, S. Lauterbach, P. Strasser, H.J. Kleebe, W. Ensinger, Appl. Phys. A 105, 847 (2011)CrossRefGoogle Scholar
  15. 15.
    T.S. Ramulu, R. Venu, S.A. Kumar, V.S. Rani, S.S. Yoon, C.G. Kim, Thin Solid Films 520, 5508 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    T.T. Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Schibauchi, L.K. Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell, Science 290, 2126 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    M. Tharmavaram, D. Rawtani, G. Pandey, Nano Converg. 4(1), 12 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, L127 (1997)CrossRefGoogle Scholar
  20. 20.
    R. Martin, Nanomaterials 266, 1961 (1994)Google Scholar
  21. 21.
    M.S. Khatri, S. Agarwal, J.H. Hsu, C.H. Chien, C.L. Chen, Y.Y. Chen, AIP Conf. Proc. 1728, 020518 (2016)CrossRefGoogle Scholar
  22. 22.
    H. Khurshid, Y.H. Huang, M.J. Bonder, G.C. Hadjipanayis, J. Magn. Magn. Mater. 321, 277 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    L.V. Thiem, L.T. Tu, M.H. Phan, Sensors 15, 5687 (2015)CrossRefGoogle Scholar
  24. 24.
    L. Jiang, Z. Jin, Y. Sun, P. Wu, Q. Peng, G. Wei, H. Ge, Int. J. Electrochem. Sci. 9, 1715 (2014)Google Scholar
  25. 25.
    J. Vilana, E. Gómez, E. Vallés, J. Electroanal. Chem. 703, 88 (2013)CrossRefGoogle Scholar
  26. 26.
    D.A.C. Brownson, C.E. Banks, The Handbook of Graphene Electrochemistry (Springer, Berlin, 2014)CrossRefGoogle Scholar
  27. 27.
    K. Maaz, S. Karim, M. Usman, A. Mumtaz, J. Liu, J.L. Duan, M. Maqbool, Nanoscale Res. Lett. 5, 1111 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    W. Li, Y. Peng, G.A. Jones, T.H. Shen, G. Hill, J. Appl. Phys. 97, 034308 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    B. Yang, G. Qin, N. Xiao, Z. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Appl. Phys. 119, 145304 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    V.R. Caffarena, J.L. Capitaneo, R.A. Simão, A.P. Guimarães, Mater. Res. 9, 205 (2006)CrossRefGoogle Scholar
  31. 31.
    D.J. Sellmyer, M. Zheng, R. Shomski, J. Phys.: Condens. Matter 13, R433 (2001)ADSGoogle Scholar
  32. 32.
    B.D. Cullity, Introduction to Magnetic Materials (Addision-Wesley, Philippine, 1972)Google Scholar
  33. 33.
    F. Brüssing, G. Nowak, A. Schumann, S. Buschhorn, H. Zabel, K.T. Bröhl, J. Phys. D Appl. Phys. 42, 165001 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 2000)Google Scholar
  35. 35.
    Y. Wang, Y. Zhang, H. Liu, S. Yu, Q. Qin, Electrochim. Acta 48, 4253 (2003)CrossRefGoogle Scholar
  36. 36.
    M.S. Arshad, S. Šturm, J. Zavašnik, A.P. Espejo, J. Escrig, M. Komelj, P.J. McGuiness, S. Kobe, K.Ž. Rožman, J. Nanoparticle Res. 16, 2688 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    W.J. Li, U. Khan, M. Irfan, K. Javed, P. Liu, S.L. Ban, X.F. Han, J. Magn. Magn. Mater. 432, 124 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    P.M. Paulus, F. Luis, M. Kroll, G. Schmid, L.J. Jongh, J. Magn. Magn. Mater. 224, 180 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    S. Shiraki, Mater. Sci.: Electron. Magn. Prop. 78 (2008)Google Scholar
  40. 40.
    L.F. Liu, W.Y. Zhou, S.S. Xie, O. Albrecht, K. Nielsch, Chem. Phys. Lett. 466, 165 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shivani Agarwal
    • 1
  • Ravi Prakash Singh
    • 2
  • Manvendra Singh Khatri
    • 1
  1. 1.Department of Sciences and HumanitiesNational Institute of Technology UttarakhandSrinagarIndia
  2. 2.Department of PhysicsIndian Institute of Science Education and ResearchBhopalIndia

Personalised recommendations