Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 476–484 | Cite as

A Spread-Spectrum SQUID Multiplexer

  • K. D. Irwin
  • S. Chaudhuri
  • H.-M. Cho
  • C. Dawson
  • S. Kuenstner
  • D. Li
  • C. J. Titus
  • B. A. Young
Article

Abstract

The transition-edge sensor (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon-arrival rates.

Keywords

TES SQUID Microwave SQUID Spread spectrum Multiplexing 

Notes

Acknowledgements

This work was supported in part by the DOE Office of Basic Energy Sciences Scientific User Facilities Division Accelerator and Detector R&D program, and by NASA under grant numbers NNX15AT02G and NNX16AH89G.

References

  1. 1.
    K.D. Irwin, Appl. Phys. Lett. 66, 1998 (1995).  https://doi.org/10.1063/1.113674 ADSCrossRefGoogle Scholar
  2. 2.
    J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015).  https://doi.org/10.1088/0953-2048/28/8/084003 ADSCrossRefGoogle Scholar
  3. 3.
    F.S. Porter, G.V. Brown, J. Cottam, Cryogenic Particle Detection, Topics in Applied Physics (Springer, Berlin, 2005), p. 359.  https://doi.org/10.1007/10933596_8 CrossRefGoogle Scholar
  4. 4.
    J.A. Chervenak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema, M.E. Huber, Appl. Phys. Lett. 74, 4043 (1999).  https://doi.org/10.1063/1.123255 ADSCrossRefGoogle Scholar
  5. 5.
    K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107 (2004).  https://doi.org/10.1063/1.1791733 ADSCrossRefGoogle Scholar
  6. 6.
    J.A.B. Mates, D.T. Becker, D.A. Bennett, B.J. Dober, J.D. Gard, J.P. Hays-Wehle, J.W. Fowler, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 111, 062601 (2017).  https://doi.org/10.1063/1.4986222 ADSCrossRefGoogle Scholar
  7. 7.
    K.D. Irwin, M.D. Niemack, J. Beyer, H.M. Cho, W.B. Doriese, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, L.R. Vale, Supercond. Sci. Technol. 23, 034004 (2010).  https://doi.org/10.1088/0953-2048/23/3/034004 ADSCrossRefGoogle Scholar
  8. 8.
    K.M. Morgan, B.K. Alpert, D.A. Bennett, E.V. Denison, W.B. Doriese, J.W. Fowler, J.D. Gard, G.C. Hilton, K.D. Irwin, Y.I. Joe, G.C. O’Neil, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, D.S. Swetz, Appl. Phys. Lett. 109, 112604 (2016).  https://doi.org/10.1063/1.4962636 ADSCrossRefGoogle Scholar
  9. 9.
    W.B. Doriese, K.M. Morgan, D.A. Bennett, E.V. Denison, C.P. Fitzgerald, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, G.C. Hilton, K.D. Irwin, Y.I. Joe, J.A.B. Mates, G.C. O’Neil, C.D. Reintsema, N.O. Robbins, D.R. Schmidt, D.S. Swetz, H. Tatsuno, L.R. Vale, J.N. Ullom, J. Low Temp. Phys. 184, 389 (2016).  https://doi.org/10.1007/s10909-015-1373-z ADSCrossRefGoogle Scholar
  10. 10.
    J.A.B. Mates, K.D. Irwin, L.R. Vale, G.C. Hilton, J. Gao, K.W. Lehnert, J. Low Temp. Phys. 167, 707 (2012).  https://doi.org/10.1007/s10909-012-0518-6 ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Kernasovskiy, S. Kuenstner, E. Karpel, Z. Ahmed, D.D. Van Winkle, S. Smith, J. Dusatko, J.C. Frisch, S. Chaudhuri, H.M. Cho, B. Dober, S.W. Henderson, G. Hilton, J. Hubmayr, K. D. Irwin, C. L. Kuo, D. Li, J. A.B. Mates, M. Nasr, S. Tantawi, J. Ullom, L. Vale, B.A. Young, J. Low Temp. Phys. This Special Issue (2017)Google Scholar
  12. 12.
    K.D. Irwin, AIP Conf. Proc. 1185, 229 (2009).  https://doi.org/10.1063/1.3292320 ADSCrossRefGoogle Scholar
  13. 13.
    D. Barret et al., Proc. SPIE 9905(9905), 99052F (2016).  https://doi.org/10.1117/12.2232432 CrossRefGoogle Scholar
  14. 14.
    J.L. Walsh, Am. J. Math. 45, 5 (1923).  https://doi.org/10.2307/2387224 CrossRefGoogle Scholar
  15. 15.
    W.B. Doriese, J.A. Beall, W.D. Duncan, L. Ferreira, G.C. Hilton, K.D. Irwin, C.D. Reintsema, J. Ullom, L. Vale, Y. Xu, Nucl. Instr. Methods A559, 808 (2006).  https://doi.org/10.1016/j.nima.2005.12.146 ADSCrossRefGoogle Scholar
  16. 16.
    C.D. Reintsema, J. Beall, W.B. Doriese, W. Duncan, L. Ferreira, G.C. Hilton, K.D. Irwin, D. Schmidt, J. Ullom, L. Vale, Y. Xu, J. Low Temp. Phys. 151, 927 (2008).  https://doi.org/10.1007/s10909-008-9769-7 ADSCrossRefGoogle Scholar
  17. 17.
    K.D. Irwin, H.M. Cho, W.B. Doriese, J.W. Fowler, G.C. Hilton, M.D. Niemack, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, L.R. Vale, J. Low Temp. Phys. 167, 588 (2012).  https://doi.org/10.1007/s10909-012-0586-7 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsStanford UniversityStanfordUSA
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations