Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 570–577 | Cite as

SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors

  • S. A. Kernasovskiy
  • S. E. Kuenstner
  • E. Karpel
  • Z. Ahmed
  • D. D. Van Winkle
  • S. Smith
  • J. Dusatko
  • J. C. Frisch
  • S. Chaudhuri
  • H. M. Cho
  • B. J. Dober
  • S. W. Henderson
  • G. C. Hilton
  • J. Hubmayr
  • K. D. Irwin
  • C. L. Kuo
  • D. Li
  • J. A. B. Mates
  • M. Nasr
  • S. Tantawi
  • J. Ullom
  • L. Vale
  • B. Young
Article

Abstract

Large arrays of cryogenic sensors for various imaging applications ranging across x-ray, gamma-ray, cosmic microwave background, mm/sub-mm, as well as particle detection increasingly rely on superconducting microresonators for high multiplexing factors. These microresonators take the form of microwave SQUIDs that couple to transition-edge sensors or microwave kinetic inductance detectors. In principle, such arrays can be read out with vastly scalable software-defined radio using suitable FPGAs, ADCs and DACs. In this work, we share plans and show initial results for SLAC Microresonator Radio Frequency (SMuRF) electronics, a next-generation control and readout system for superconducting microresonators. SMuRF electronics are unique in their implementation of specialized algorithms for closed-loop tone tracking, which consists of fast feedback and feedforward to each resonator’s excitation parameters based on transmission measurements. Closed-loop tone tracking enables improved system linearity, a significant increase in sensor count per readout line, and the possibility of overcoupled resonator designs for enhanced dynamic range. Low-bandwidth prototype electronics were used to demonstrate closed-loop tone tracking on twelve 300-kHz-wide microwave SQUID resonators, spaced at \(\sim \) 6 MHz with center frequencies \(\sim \) 5–6 GHz. We achieve multi-kHz tracking bandwidth and demonstrate that the noise floor of the electronics is subdominant to the noise intrinsic in the multiplexer.

Keywords

Microwave SQUIDs FPGA Tone-tracking TES Multiplexing Microresonators MKIDs 

Notes

Acknowledgements

This work was supported by the Department of Energy Office of Science Detector R&D funds.

References

  1. 1.
    M.H. Abitbol, Z. Ahmed, D. Barron, R.B. Thakur, A.N. Bender, B.A. Benson et al., in CMB-S4 Technology Book, arXiv preprint arXiv:1706.02464 (2017)
  2. 2.
    J.N. Ullom, D.A. Bennett, Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy. Supercond. Sci. Technol. 28(8), 084003 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    M. Dobbs, M. Halpern, K.D. Irwin, A.T. Lee, J. Mates, B.A. Mazin, Multiplexed readout of CMB polarimeters. J. Phys. Conf. Ser. 155, 012004 (2009)CrossRefGoogle Scholar
  4. 4.
    B. Benson, P. Ade, Z. Ahmed, S. Allen, K. Arnold, J. Austermann, A. Bender, L. Bleem, J. Carlstrom, C. Chang et al., SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope, in SPIE Astronomical Telescopes + Instrumentation (International Society for Optics and Photonics, 2014), pp. 91531P–91531PGoogle Scholar
  5. 5.
    S.W. Henderson, R. Allison, J. Austermann, T. Baildon, N. Battaglia, J.A. Beall, D. Becker, F. De Bernardis, J.R. Bond, E. Calabrese, S.K. Choi, K.P. Coughlin, K.T. Crowley, R. Datta, M.J. Devlin, S.M. Duff, R. Dunner, J. Dunkley, A. van Engelen, P.A. Gallardo, E. Grace, M. Hasselfield, F. Hills, G.C. Hilton, A.D. Hincks, R. Hlozek, S.P. Ho, J. Hubmayr, K. Huffenberger, J.P. Hughes, K.D. Irwin, B.J. Koopman, A.B. Kosowsky, D. Li, J. McMahon, C. Munson, F. Nati, L. Newburgh, M.D. Niemack, P. Niraula, L.A. Page, C.G. Pappas, M. Salatino, A. Schillaci, B.L. Schmitt, N. Sehgal, B.D. Sherwin, J.L. Sievers, S.M. Simon, D.N. Spergel, S.T. Staggs, J.R. Stevens, R. Thornton, J. Van Lanen, E.M. Vavagiakis, J.T. Ward, E.J. Wollack, in Advanced ACTPol Cryogenic Detector Arrays and Readout (2015), p. 9Google Scholar
  6. 6.
    J. Zmuidzinas, Superconducting microresonators: physics and applications. Annu. Rev. Condens. Matter Phys. 3(1), 169–214 (2012)CrossRefGoogle Scholar
  7. 7.
    K.D. Irwin, Shannon limits for low-temperature detector readout, in AIP Conference Proceedings, vol. 1185 (AIP, 2009), pp. 229–236Google Scholar
  8. 8.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Demonstration of a multiplexer of dissipationless superconducting quantum interference devices. Appl. Phys. Lett. 92, 023514 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    D. Werthimer, The CASPER collaboration for high-performance open source digital radio astronomy instrumentation, in General Assembly and Scientific Symposium, 2011 XXXth URSI (IEEE, 2011), pp. 1–4Google Scholar
  11. 11.
    R. Herbst, R. Claus, M. Freytag, G. Haller, M. Huffer, S. Maldonado, K. Nishimura, C. O’Grady, J. Panetta, A. Perazzo et al., Design of the SLAC RCE Platform: a general purpose ATCA based data acquisition system, in Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014 IEEE (IEEE, 2014), pp. 1–4Google Scholar
  12. 12.
    B. Dober, D.T. Becker, D.A. Bennett, S.A. Bryan, S.M. Duff, J.D. Gard, J.P. Hays-Wehle, G.C. Hilton, J. Hubmayr, C.D. Reintsema, L.R. Vale, J.N. Ullom, Microwave SQUID multiplexer for cosmic microwave background imagers, ArXiv e-prints (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. A. Kernasovskiy
    • 1
  • S. E. Kuenstner
    • 1
  • E. Karpel
    • 1
  • Z. Ahmed
    • 2
  • D. D. Van Winkle
    • 2
  • S. Smith
    • 2
  • J. Dusatko
    • 2
  • J. C. Frisch
    • 2
  • S. Chaudhuri
    • 1
  • H. M. Cho
    • 2
  • B. J. Dober
    • 3
  • S. W. Henderson
    • 2
  • G. C. Hilton
    • 3
  • J. Hubmayr
    • 3
  • K. D. Irwin
    • 1
    • 2
  • C. L. Kuo
    • 1
    • 2
  • D. Li
    • 2
  • J. A. B. Mates
    • 3
  • M. Nasr
    • 2
  • S. Tantawi
    • 2
  • J. Ullom
    • 3
  • L. Vale
    • 3
  • B. Young
    • 4
  1. 1.Department of PhysicsStanford UniversityStanfordUSA
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.National Institute for Standards and TechnologyBoulderUSA
  4. 4.Santa Clara UniversitySanta ClaraUSA

Personalised recommendations