Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 337–343 | Cite as

Performance of an X-ray Microcalorimeter with a 240 μm Absorber and a 50 μm TES Bilayer

  • Antoine R. Miniussi
  • Joseph S. Adams
  • Simon R. Bandler
  • James A. Chervenak
  • Aaron M. Datesman
  • Megan E. Eckart
  • Audrey J. Ewin
  • Fred M. Finkbeiner
  • Richard L. Kelley
  • Caroline A. Kilbourne
  • Frederick S. Porter
  • John E. Sadleir
  • Kazuhiro Sakai
  • Stephen J. Smith
  • Nicholas A. Wakeham
  • Edward J. Wassell
  • Wonsik Yoon
Article

Abstract

Superconducting transition-edge sensor (TES) microcalorimeters are being developed for a variety of potential astrophysics missions, including Athena. The X-ray integral field unit instrument on this mission requires close-packed pixels on a 0.25 mm pitch, and high quantum efficiency between 0.2 and 12 keV. In this work, we describe a new approach with 50 μm square TESs consisting of a Mo/Au bilayer, deposited on silicon nitride membranes to provide a weak thermal conductance to a ~ 50 mK heat bath. Larger TESs usually have additional normal metal stripes on top of the bilayer to reduce the noise. However, we have found that excellent spectral performance can be achieved without the need for any normal metal stripes on top of the TES. A spectral performance of 1.58 ± 0.12 eV at 5.9 keV has been achieved, the best resolution seen in any of our devices with this pixel size.

Keywords

Transition-edge sensor X-IFU Microcalorimeter 

References

  1. 1.
    K. Nandra et al., (2013). arXiv:1306.2307 [astro-ph.HE]
  2. 2.
    D. Barret et al., Space Telescopes and instrumentation 2014: ultraviolet to gamma ray. Proc. SPIE 9905, 99052F (2016).  https://doi.org/10.1117/12.2232432 CrossRefGoogle Scholar
  3. 3.
    S.J. Smith et al., Space telescopes and instrumentation 2016: ultraviolet to gamma ray. Proc. SPIE 9905, 99052H (2016).  https://doi.org/10.1117/2.2231749 ADSCrossRefGoogle Scholar
  4. 4.
    N. Iyomoto et al., Appl. Phys. Lett. 92, 013508 (2008).  https://doi.org/10.1063/1.2830665 ADSCrossRefGoogle Scholar
  5. 5.
    J. Ullom et al., Appl. Phys. Lett. 84, 4206 (2004).  https://doi.org/10.1063/1.1753058 ADSCrossRefGoogle Scholar
  6. 6.
    M. Lindeman et al., Nucl. Instr. Methods Phys. Res. A 520, 348 (2004).  https://doi.org/10.1016/j.nima.2003.11.264 ADSCrossRefGoogle Scholar
  7. 7.
    N.A. Wakeham et al., J. Low Temp. Phys. This Special Issue LTD17 (2018)Google Scholar
  8. 8.
    J.E. Sadleir et al., Phys. Rev. B 84, 184502 (2011).  https://doi.org/10.1103/PhysRevB.84.184502 ADSCrossRefGoogle Scholar
  9. 9.
    T. Saab et al., Nucl. Instr. Methods Phys. Res. A 559, 712 (2006).  https://doi.org/10.1016/j.nima.2005.12.112 ADSCrossRefGoogle Scholar
  10. 10.
    C.N. Bailey et al., J. Low Temp. Phys. 167(3–4), 121 (2012).  https://doi.org/10.1007/s10909-012-0562-2 ADSCrossRefGoogle Scholar
  11. 11.
    K. Irwin, G. Hilton, C. Enss, Top. Appl. Phys. (2005).  https://doi.org/10.1007/10933596_3 CrossRefGoogle Scholar
  12. 12.
    N. Iyomoto et al., J. Low Temp. Phys. (2008).  https://doi.org/10.1007/s10909-007-9668-3 CrossRefGoogle Scholar
  13. 13.
    W. Yoon et al., IEEE Trans. Appl. Supercond. 27, 4 (2017).  https://doi.org/10.1109/TASC.2017.2655718 CrossRefGoogle Scholar
  14. 14.
    G. Hölzer et al., Phys. Rev. A 56, 4554 (1997).  https://doi.org/10.1103/PhysRevA.56.4554 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Antoine R. Miniussi
    • 1
    • 2
    • 4
  • Joseph S. Adams
    • 1
    • 2
    • 4
  • Simon R. Bandler
    • 1
    • 4
  • James A. Chervenak
    • 1
    • 4
  • Aaron M. Datesman
    • 1
    • 3
    • 4
  • Megan E. Eckart
    • 1
    • 4
  • Audrey J. Ewin
    • 1
    • 4
  • Fred M. Finkbeiner
    • 1
    • 3
    • 4
  • Richard L. Kelley
    • 1
    • 4
  • Caroline A. Kilbourne
    • 1
    • 4
  • Frederick S. Porter
    • 1
    • 4
  • John E. Sadleir
    • 1
    • 4
  • Kazuhiro Sakai
    • 1
    • 2
    • 4
  • Stephen J. Smith
    • 1
    • 2
    • 4
  • Nicholas A. Wakeham
    • 1
    • 4
    • 5
  • Edward J. Wassell
    • 1
    • 3
    • 4
  • Wonsik Yoon
    • 1
    • 4
    • 5
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.CRESST II – University of Maryland Baltimore CountyBaltimoreUSA
  3. 3.SGT, IncGreenbeltUSA
  4. 4.Wyle Information SystemsMcLeanUSA
  5. 5.NPP – Universities Space Research AssociationWashingtonUSA

Personalised recommendations