Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 387–392 | Cite as

A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout

  • W. Miao
  • H. Gao
  • Z. Wang
  • W. Zhang
  • Y. Ren
  • K. M. Zhou
  • S. C. Shi
  • C. Yu
  • Z. Z. He
  • Q. B. Liu
  • Z. H. Feng
Article

Abstract

In this paper, we present the development of a graphene-based hot electron bolometer with Johnson noise readout. The bolometer is a graphene microbridge connected to a log spiral antenna by Au contact pads. The Fourier transform spectrometer measurement shows the bolometer has high coupling efficiency in the frequency range from 0.3 to 1.6 THz. Using 300/77 K blackbody loads, we measure an optical noise equivalent power of 5.6 × 10−12 W/Hz0.5 at 3.0 K. To understand the thermal transport inside the graphene microbridge, we measure the bolometers with different microbridge lengths at different bath temperatures. We find that the thermal conductance due to electron diffusion is significant in the bolometers.

Keywords

Graphene Terahertz Hot electron bolometer Johnson noise readout Equivalent noise power 

Notes

Acknowledgements

This work is supported in part by CAS under Grant No. XDB23020200, in part by NSFC under Grant Nos. 11190012 and 11473075, and in part by the CAS Joint Key Lab for Radio Astronomy.

References

  1. 1.
    A.C. Betz, F. Vialla, D. Brunel, C. Voisin, M. Picher, A. Cavanna, A. Madouri, G. Feve, J.M. Berroir, B. Placais, E. Pallecchi, Phys. Rev. Lett. 109, 056805 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    C. Lee, J.Y. Kim, S. Bae, K.S. Kim, B.H. Hong et al., Appl. Phys. Lett. 98, 071905 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    A.E. Fatimy, R.L. Myers-Ward, A.K. Boyd, K.M. Daniels, D.K. Gaskill, P. Barbara, Nat. Nanotechnol. 11, 335 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Q. Han, T. Gao, R. Zhang, Y. Chen, J.H. Chen, G.R. Liu, Y.F. Zhang, Z.F. Liu, X.S. Wu, D.P. Yu, Sci. Rep. 3, 3533 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    H. Vora, P. Kumaravadivel, B. Nielsen, X. Du, Appl. Phys. Lett. 100, 153507 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    K.C. Fong, K.C. Schwab, Phys. Rev. X 2, 031006 (2012)Google Scholar
  7. 7.
    M.J. Wang, J.W. Wang, C.L. Wang, Y.Y. Chiang, H.H. Chang, Appl. Phys. Lett. 104, 033502 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    A.D. Semenov, H.W. Hubers, J. Schubert, G.N. Gol’tsman, A.L. Elaniev, B.M. Voronov, E.M. Gershenzon, J. Appl. Phys. 88, 6758 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    B.S. Karasik, C.B. McKitterick, D.E. Prober, J. Low Temp. Phys. 176, 249 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    D.E. Prober, Appl. Phys. Lett. 62, 2119 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Purple Mountain ObservatoryCASNanjingChina
  2. 2.Key Lab of Radio AstronomyCASNanjingChina
  3. 3.Hebei Semiconductor Research InstituteShijiazhuangChina

Personalised recommendations