Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 593–599 | Cite as

Resonator Stabilization Architecture to Suppress Switching Transient Crosstalk in I-CDM

  • Malcolm Durkin
  • Joel C. Weber
  • William B. Doriese
  • Gene C. Hilton
  • Daniel S. Swetz
  • Joel N. Ullom
Article
  • 11 Downloads

Abstract

The ever-increasing sizes of transition-edge sensor (TES) microcalorimeter arrays motivates improved multiplexed readout with large multiplexing factors, low power dissipation, and low levels of crosstalk. Current-summed code division multiplexing (I-CDM) has been proposed as an alternative to flux-summed code division multiplexing (Φ-CDM) because of its lower power dissipation and greater robustness against the failure of individual readout elements. Simulating I-CDM arrays, we find that unswitched circuit components provide a mechanism for crosstalk, the magnitude of which is determined by their inductance. To mitigate this source of crosstalk, we propose a technique called resonator-stabilized I-CDM (RI-CDM), which the simulations predict will reduce crosstalk by an order of magnitude. RI-CDM reads out dc-biased TESs on an amplitude-modulated carrier wave.

Keywords

SQUID multiplexer Transition-edge sensor Code division multiplexing 

Notes

Acknowledgements

We acknowledge funding from NASA Grant NNX17AE80G “Novel SQUID Multiplexers for the Athena Satellite Mission” and NASA APRA NNH17AE23I, “Microcalorimeters for next generation x-ray missions”.

References

  1. 1.
    W.B. Doriese, P. Abbamonte, B.L. Alpert, D.A. Bennett, E.V. Denison, Y. Fang, D.A. Fischer, C.P. Fitzgerald, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, G.C. Hilton, C. Jaye, J.L. McChesney, L. Miaja-Avila, K.M. Morgan, Y.I. Joe, G.C. O’Neil, C.D. Reintsema, F. Rodolakis, D.R. Schmidt, H. Tatsuno, J. Uhlig, L.R. Vale, J.N. Ullom, D.S. Swetz, Rev. Sci. Instrum. 88, 053108 (2017).  https://doi.org/10.1063/1.4983316 ADSCrossRefGoogle Scholar
  2. 2.
    C.A. Kilbourne, W.B. Doriese, S.R. Bandler, R.P. Brekoskky, A.-D. Brown, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, G.C. Hilton, K.D. Irwin, N. Iyomoto, R.L. Kelley, F.S. Porter, C.D. Reintsema, S.J. Smith, J.N. Ullom, Proc SPIE 7011, 701104 (2008).  https://doi.org/10.1117/12790027 CrossRefGoogle Scholar
  3. 3.
    L. Ravera, D. Barret, J.W. den herder, L. Piro, R. Cledassou, E. Pointecouteau, P. Peille, F. Pajot, M. Arnaud, C. Pigot et al., Proc. SPIE 9144, 91442L (2014).  https://doi.org/10.1117/122055884 CrossRefGoogle Scholar
  4. 4.
    J.A. Gaskin, M.C. Weisskopf, A. Vikhlinin, H.D. Tananbaum, S.R. Bandler, M.W. Bautz, D.N. Burrows, A.D. Falcone, F.A. Harrison, R.K. Heilmann et al., Proc. SPIE 9601, 96010J (2015).  https://doi.org/10.1117/12.2190837 CrossRefGoogle Scholar
  5. 5.
    H. Akamatsu, L. Gottardi, C.P. de Vries, J.S. Adams, S.R. Bandler, M.P. Bruijn, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, J.R. Gao, J.-W. den Herder, R. den Hartog, H. Hoevers, R.E. Kelley, P. Khosropanah, J. Low Temp. Phys. 184, 436 (2016).  https://doi.org/10.1007/s10909-016-1525-9 ADSCrossRefGoogle Scholar
  6. 6.
    J.A.B. Mates, D.T. Becker, D.A. Bennet, B.J. Dober, J.D. Gard, J.P. Hays-wehle, J.W. Fowler, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 111, 062601 (2017).  https://doi.org/10.1063/1.4986222 ADSCrossRefGoogle Scholar
  7. 7.
    W.B. Doriese, K.M. Morgan, D.A. Bennett, E.V. Denison, C.P. Fitzgerald, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, G.C. Hilton, K.D. Irwin, Y.I. Joe, J.A.B. Mates, G.C. O’Neil, C.D. Reintsema, N.O. Robbins, D.R. Schmidt, D.S. Swetz, H. Tatsuno, L.R. Vale, J.N. Ullom, J. Low Temp. Phys. 184, 389 (2016).  https://doi.org/10.1007/s10909-015-1373-z ADSCrossRefGoogle Scholar
  8. 8.
    J. Chervenak, K. Irwin, E. Grossman, J. Martinis, C. Reintsema, M. Huber, Appl. Phys. Lett. 74, 4043 (1999).  https://doi.org/10.1063/1.23255 ADSCrossRefGoogle Scholar
  9. 9.
    J.L. Walsh, Am. J. Math. 45, 5 (1923).  https://doi.org/10.2307/2387224 CrossRefGoogle Scholar
  10. 10.
    G.M. Stiehl, W.B. Doriese, J.W. Fowler, G.C. Hilton, K.D. Irwin, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, J.N. Ullom, L.R. Vale, Appl. Phys. Lett. 100, 072601 (2012).  https://doi.org/10.1063/1.3684807 ADSCrossRefGoogle Scholar
  11. 11.
    K.M. Morgan, B.K. Alpert, D.A. Bennett, E.V. Denison, W.B. Doriese, J.W. Fowler, J.D. Gard, G.C. Hilton, K.D. Irwin, Y.I. Joe, G.C. O’Neil, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, D.S. Swetz, Appl. Phys. Lett. 109, 112604 (2016).  https://doi.org/10.1063/1.4962636 ADSCrossRefGoogle Scholar
  12. 12.
    K.D. Irwin, H.M. Cho, W.B. Doriese, J.W. Fowler, G.C. Hilton, M.D. Niemack, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, L.R. Vale, J. Low Temp. Phys. 167, 588 (2012).  https://doi.org/10.1007/s10909-012-0586-7 ADSCrossRefGoogle Scholar
  13. 13.
    M.D. Niemack, J. Beyer, H.M. Cho, W.B. Doriese, G.C. Hilton, K.D. Irwin, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, L.R. Vale, Appl. Phys. Lett. 96, 163509 (2010).  https://doi.org/10.1063/1.3378772 ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.University of Colorado BoulderBoulderUSA
  2. 2.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations