Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 321–327 | Cite as

Mapping TES Temperature Sensitivity and Current Sensitivity as a Function of Temperature, Current, and Magnetic Field with IV Curve and Complex Admittance Measurements

  • Y. Zhou
  • C. V. Ambarish
  • R. Gruenke
  • F. T. Jaeckel
  • K. L. Kripps
  • D. McCammon
  • K. M. Morgan
  • D. Wulf
  • S. Zhang
  • J. S. Adams
  • S. R. Bandler
  • J. A. Chervenak
  • A. M. Datesman
  • M. E. Eckart
  • A. J. Ewin
  • F. M. Finkbeiner
  • R. L. Kelley
  • C. A. Kilbourne
  • A. R. Miniussi
  • F. S. Porter
  • J. E. Sadleir
  • K. Sakai
  • S. J. Smith
  • N. A. Wakeham
  • E. J. Wassell
  • W. Yoon
Article
  • 60 Downloads

Abstract

We have specialized astronomical applications for X-ray microcalorimeters with superconducting transition edge sensors (TESs) that require exceptionally good TES performance, but which operate in the small-signal regime. We have therefore begun a program to carefully characterize the entire transition surface of TESs with and without the usual zebra stripes to see if there are reproducible local “sweet spots” where the performance is much better than average. These measurements require precise knowledge of the circuit parameters. Here, we show how the Shapiro effect can be used to precisely calibrate the value of the shunt resistor. We are also investigating the effects of stress and external magnetic fields to better understand reproducibility problems.

Keywords

TES Complex impedance Temperature sensitivity Current sensitivity Weak-link effect Josephson junction Shapiro steps 

Notes

Acknowledgements

This work has been supported by NASA Grant NNX16AM31G and the China Scholarship Council (Grant No. 201606210188).

References

  1. 1.
    K.M. Morgan, S.E. Busch, M.E. Eckart, C.A. Kilbourne, D. McCammon, Large area transition edge sensor X-ray microcalorimeters for diffuse X-ray background studies. J. Low Temp. Phys. 176, 331 (2014).  https://doi.org/10.1007/s10909-013-1011-6 ADSCrossRefGoogle Scholar
  2. 2.
    D. McCammon, Thermal equilibrium calorimeters—an introduction, in Cryogenic particle detection, ed. by C. Enss, H.-C. Stahl (Springer, Berlin, Heidelberg, 2005), pp. 1–34.  https://doi.org/10.1007/10933596_1 CrossRefGoogle Scholar
  3. 3.
    N. Iyomoto et al., Close-packed arrays of transition-edge x-ray microcalorimeters with high spectral resolution at 5.9keV. Appl. Phys. Lett. 92, 013508 (2008).  https://doi.org/10.1063/1.2830665 ADSCrossRefGoogle Scholar
  4. 4.
    N. Jethava et al., Dependence of excess noise on the partial derivatives of resistance in superconducting transition edge sensors. AIP Conf. Proc. 1185, 31 (2009).  https://doi.org/10.1063/1.3292343 ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Smith et al., Implications of weak-link behavior on the performance of Mo/Au bilayer transition-edge sensors. J. Appl. Phys. 114(7), 074513 (2013).  https://doi.org/10.1063/1.4818917 ADSCrossRefGoogle Scholar
  6. 6.
    N.A. Wakeham et al., Effects of normal metal features on superconducting transition-edge sensors. J. Low Temp. Phys. (2018).  https://doi.org/10.1007/s10909-018-1898-z. (this Special Issue LTD17)CrossRefGoogle Scholar
  7. 7.
    S. Zhang et al., Mapping of the resistance of a superconducting transition edge sensor as a function of temperature, current, and applied magnetic field. J. Appl. Phys. 121, 074503 (2017).  https://doi.org/10.1063/1.4976562 ADSCrossRefGoogle Scholar
  8. 8.
    J.E. Sadleir et al., Proximity effects and nonequilibrium superconductivity in transition-edge sensors. Phys. Rev. B 84, 184502 (2011).  https://doi.org/10.1103/PhysRevB.84.184502 ADSCrossRefGoogle Scholar
  9. 9.
    A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).  https://doi.org/10.1002/352760278X CrossRefGoogle Scholar
  10. 10.
    J. Sadleir, Unexpected nonlinear effects in superconducting transition-edge sensors. in Applied Superconductivity Conference (ASC 2016), Denver. NASA technical report GSFC-E-DAA-TN34724 https://ntrs.nasa.gov/search.jsp?R=20160011113
  11. 11.
    S. Shapiro, Josephson currents in superconducting tunneling: the effect of microwaves and other observations. Phys. Rev. Lett. 11, 80 (1963).  https://doi.org/10.1103/PhysRevLett.11.80 ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Lindeman et al., Complex impedance measurements of calorimeters and bolometers: correction for stray impedances. Rev. Sci. Instr. 78, 043105 (2007).  https://doi.org/10.1063/1.2723066 ADSCrossRefGoogle Scholar
  13. 13.
    I.J. Maasilta, Complex impedance, responsivity and noise of transition-edge sensors: analytical solutions for two- and three-block thermal models. AIP Adv. 2, 042110 (2012).  https://doi.org/10.1063/1.4759111 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. Zhou
    • 1
  • C. V. Ambarish
    • 1
  • R. Gruenke
    • 1
  • F. T. Jaeckel
    • 1
  • K. L. Kripps
    • 1
  • D. McCammon
    • 1
  • K. M. Morgan
    • 1
    • 3
  • D. Wulf
    • 1
  • S. Zhang
    • 1
  • J. S. Adams
    • 2
  • S. R. Bandler
    • 2
  • J. A. Chervenak
    • 2
  • A. M. Datesman
    • 2
  • M. E. Eckart
    • 2
  • A. J. Ewin
    • 2
  • F. M. Finkbeiner
    • 2
  • R. L. Kelley
    • 2
  • C. A. Kilbourne
    • 2
  • A. R. Miniussi
    • 2
  • F. S. Porter
    • 2
  • J. E. Sadleir
    • 2
  • K. Sakai
    • 2
  • S. J. Smith
    • 2
  • N. A. Wakeham
    • 2
  • E. J. Wassell
    • 2
  • W. Yoon
    • 2
  1. 1.Physics DepartmentUniversity of Wisconsin – MadisonMadisonUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.NISTBoulderUSA

Personalised recommendations