Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 547–555 | Cite as

Design and Assembly of SPT-3G Cold Readout Hardware

  • J. S. Avva
  • P. A. R. Ade
  • Z. Ahmed
  • A. J. Anderson
  • J. E. Austermann
  • R. Basu Thakur
  • D. Barron
  • A. N. Bender
  • B. A. Benson
  • J. E. Carlstrom
  • F. W. Carter
  • T. Cecil
  • C. L. Chang
  • J. F. Cliche
  • A. Cukierman
  • E. V. Denison
  • T. de Haan
  • J. Ding
  • M. A. Dobbs
  • D. Dutcher
  • T. Elleflot
  • W. Everett
  • A. Foster
  • R. N. Gannon
  • A. Gilbert
  • J. C. Groh
  • N. W. Halverson
  • A. H. Harke-Hosemann
  • N. L. Harrington
  • M. Hasegawa
  • K. Hattori
  • J. W. Henning
  • G. C. Hilton
  • W. L. Holzapfel
  • Y. Hori
  • N. Huang
  • K. D. Irwin
  • O. B. Jeong
  • M. Jonas
  • T. Khaire
  • A. M. Kofman
  • M. Korman
  • D. Kubik
  • S. Kuhlmann
  • C. L. Kuo
  • A. T. Lee
  • A. E. Lowitz
  • S. S. Meyer
  • J. Montgomery
  • A. Nadolski
  • T. Natoli
  • H. Nguyen
  • H. Nishino
  • G. I. Noble
  • V. Novosad
  • S. Padin
  • Z. Pan
  • J. Pearson
  • C. M. Posada
  • A. Rahlin
  • K. Rotermund
  • J. E. Ruhl
  • L. J. Saunders
  • J. T. Sayre
  • I. Shirley
  • E. Shirokoff
  • G. Smecher
  • J. A. Sobrin
  • A. A. Stark
  • K. T. Story
  • A. Suzuki
  • Q. Y. Tang
  • K. L. Thompson
  • C. Tucker
  • L. R. Vale
  • K. Vanderlinde
  • J. D. Vieira
  • G. Wang
  • N. Whitehorn
  • V. Yefremenko
  • K. W. Yoon
  • M. R. Young
Article

Abstract

The third-generation upgrade to the receiver on the South Pole Telescope, SPT-3G, was installed at the South Pole during the 2016–2017 austral summer to measure the polarization of the cosmic microwave background. Increasing the number of detectors by a factor of 10 to \(\sim 16,000\) required the multiplexing factor to increase to 68 and the bandwidth of the frequency-division readout electronics to span 1.6–5.2 MHz. This increase necessitates low-thermal conductance, low-inductance cryogenic wiring. Our cold readout system consists of planar thin-film aluminum inductive–capacitive resonators, wired in series with the detectors, summed together, and connected to 4K SQUIDs by \(10-\upmu \hbox {m}\)-thick niobium–titanium (NbTi) broadside-coupled striplines. Here, we present an overview of the cold readout electronics for SPT-3G, including assembly details and characterization of electrical and thermal properties of the system. We report, for the NbTi striplines, values of \(R \le 10^{-4} \Omega \), \(L = 21 \pm 1~\hbox {nH}\), and \(C = 1.47\pm .02~\hbox {nF}\). Additionally, the striplines’ thermal conductivity is described by \(kA = 6.0\pm 0.3 \ T^{0.92 \pm 0.04}~\upmu \hbox {W}~\hbox {mm}~\hbox {K}^{-1}\). Finally, we provide projections for cross talk induced by parasitic impedances from the stripline and find that the median value of percentage cross talk from leakage current is 0.22 and \(0.09\%\) from wiring impedance.

Keywords

SPT-3G Cosmic microwave background Frequency-division multiplexing 

Notes

Acknowledgements

The South Pole Telescope is supported by the National Science Foundation (NSF) through Grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, and the Kavli Foundation and the Gordon and Betty Moore Foundation Grant GBMF 947. Work at Argonne National Laboratory, including Laboratory Directed Research and Development support and use of the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science (DOE-OS) user facility, was supported under Contract No. DE-AC02-06CH11357. Work at Fermi National Accelerator Laboratory, a DOE-OS, HEP User Facility managed by the Fermi Research Alliance, LLC, was supported under Contract No. DE-AC02-07CH11359. NWH acknowledges support from NSF CAREER Grant AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program.We acknowledge R. Divan, L. Stan, C.S. Miller, and V. Kutepova for supporting our work in the Argonne Center for Nanoscale Materials. D. Barron is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1501422. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant Nos. DGE 1752814 and DGE 1106400. Useful conversations are acknowledged with Xiaoyu Guo.

References

  1. 1.
    B.A. Benson, P.A.R. Ade, Z. Ahmed, S.W. Allen, K. Arnold, J.E. Austermann, A.N. Bender, L.E. Bleem, J.E. Carlstrom, C.L. Chang, et al., Spt-3g: a next-generation cosmic microwave background polarization experiment on the south pole telescope, in SPIE Astronomical Telescopes + Instrumentation, International Society for Optics and Photonics, (2014), pp. 91531P–91531PGoogle Scholar
  2. 2.
    A.N. Bender, P.A.R. Ade, A.J. Anderson, J. Avva, Z. Ahmed, K. Arnold, J.E. Austermann, R. Basu Thakur, B.A. Benson, L.E. Bleem, et al., Integrated performance of a frequency domain multiplexing readout in the spt-3g receiver, in International Society for Optics and Photonics Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, vol. 9914, (2016), p. 99141DGoogle Scholar
  3. 3.
    A.N. Bender, J.-F. Cliche, T. de Haan, M.A. Dobbs, A.J. Gilbert, J. Montgomery, N. Rowlands, G.M. Smecher, K. Smith, A. Wilson, Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes. in SPIE Astronomical Telescopes+ Instrumentation, International Society for Optics and Photonics, (2014), pp. 91531A–91531AGoogle Scholar
  4. 4.
    M.A. Dobbs, M. Lueker, K.A. Aird, A.N. Bender, B.A. Benson, L.E. Bleem, J.E. Carlstrom, C.L. Chang, H.-M. Cho, J. Clarke et al., Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements. Rev. Sci. Instrum. 83(7), 073113 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    K. Hattori, Polarbear collaboration, et al., Frequency domain multiplexed readout of kilopixel arrays of transition edge sensor bolometers, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, (2014)Google Scholar
  6. 6.
    K. Rotermund, B. Barch, S. Chapman, K. Hattori, A. Lee, N. Palaio, I. Shirley, A. Suzuki, C. Tran, Planar lithographed superconducting lc resonators for frequency-domain multiplexed readout systems. J. Low Temp. Phys. 184(1–2), 486–491 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. S. Avva
    • 1
  • P. A. R. Ade
    • 2
  • Z. Ahmed
    • 3
    • 4
    • 5
  • A. J. Anderson
    • 7
    • 8
  • J. E. Austermann
    • 9
  • R. Basu Thakur
    • 8
  • D. Barron
    • 6
  • A. N. Bender
    • 8
    • 10
  • B. A. Benson
    • 7
    • 8
    • 11
  • J. E. Carlstrom
    • 8
    • 10
    • 11
    • 12
    • 13
  • F. W. Carter
    • 8
    • 10
  • T. Cecil
    • 10
  • C. L. Chang
    • 8
    • 10
    • 11
  • J. F. Cliche
    • 14
  • A. Cukierman
    • 1
  • E. V. Denison
    • 9
  • T. de Haan
    • 1
  • J. Ding
    • 15
  • M. A. Dobbs
    • 14
    • 16
  • D. Dutcher
    • 8
    • 13
  • T. Elleflot
    • 31
  • W. Everett
    • 17
  • A. Foster
    • 18
  • R. N. Gannon
    • 15
  • A. Gilbert
    • 14
  • J. C. Groh
    • 1
  • N. W. Halverson
    • 17
    • 19
  • A. H. Harke-Hosemann
    • 10
    • 21
  • N. L. Harrington
    • 1
  • M. Hasegawa
    • 23
  • K. Hattori
    • 25
  • J. W. Henning
    • 8
  • G. C. Hilton
    • 9
  • W. L. Holzapfel
    • 1
  • Y. Hori
    • 23
  • N. Huang
    • 1
  • K. D. Irwin
    • 3
    • 4
    • 5
  • O. B. Jeong
    • 1
  • M. Jonas
    • 7
  • T. Khaire
    • 15
  • A. M. Kofman
    • 21
    • 22
  • M. Korman
    • 18
  • D. Kubik
    • 7
  • S. Kuhlmann
    • 10
  • C. L. Kuo
    • 3
    • 4
    • 5
  • A. T. Lee
    • 1
    • 24
  • A. E. Lowitz
    • 8
  • S. S. Meyer
    • 8
    • 11
    • 12
    • 13
  • J. Montgomery
    • 14
  • A. Nadolski
    • 21
  • T. Natoli
    • 26
  • H. Nguyen
    • 7
  • H. Nishino
    • 23
  • G. I. Noble
    • 14
  • V. Novosad
    • 15
  • S. Padin
    • 8
  • Z. Pan
    • 8
    • 13
  • J. Pearson
    • 15
  • C. M. Posada
    • 15
  • A. Rahlin
    • 7
    • 8
  • K. Rotermund
    • 20
  • J. E. Ruhl
    • 18
  • L. J. Saunders
    • 8
    • 10
  • J. T. Sayre
    • 17
  • I. Shirley
    • 1
  • E. Shirokoff
    • 8
    • 11
  • G. Smecher
    • 27
  • J. A. Sobrin
    • 8
    • 13
  • A. A. Stark
    • 28
  • K. T. Story
    • 3
    • 4
  • A. Suzuki
    • 1
    • 24
  • Q. Y. Tang
    • 8
    • 11
  • K. L. Thompson
    • 3
    • 4
    • 5
  • C. Tucker
    • 2
  • L. R. Vale
    • 9
  • K. Vanderlinde
    • 26
    • 29
  • J. D. Vieira
    • 21
    • 22
  • G. Wang
    • 10
  • N. Whitehorn
    • 1
    • 30
  • V. Yefremenko
    • 10
  • K. W. Yoon
    • 3
    • 4
    • 5
  • M. R. Young
    • 29
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.School of Physics and AstronomyCardiff UniversityCardiffUK
  3. 3.Kavli Institute for Particle Astrophysics and CosmologyStanford UniversityStanfordUSA
  4. 4.Department of PhysicsStanford UniversityStanfordUSA
  5. 5.SLAC National Accelerator LaboratoryMenlo ParkUSA
  6. 6.UC Berkeley Space Sciences LabBerkeleyUSA
  7. 7.Fermi National Accelerator LaboratoryBataviaUSA
  8. 8.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoUSA
  9. 9.National Institute of Standards and TechnologyBoulderUSA
  10. 10.High-Energy Physics DivisionArgonne National LaboratoryArgonneUSA
  11. 11.Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoUSA
  12. 12.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA
  13. 13.Department of PhysicsUniversity of ChicagoChicagoUSA
  14. 14.Department of PhysicsMcGill UniversityMontrealCanada
  15. 15.Material Science DivisionArgonne National LaboratoryArgonneUSA
  16. 16.CIFAR Program in Cosmology and GravityCanadian Institute for Advanced ResearchTorontoCanada
  17. 17.CASA, Department of Astrophysical and Planetary SciencesUniversity of ColoradoBoulderUSA
  18. 18.Physics DepartmentCase Western Reserve UniversityClevelandUSA
  19. 19.Department of PhysicsUniversity of ColoradoBoulderUSA
  20. 20.Department of Physics and Atmospheric ScienceHalifaxCanada
  21. 21.Astronomy DepartmentUniversity of IllinoisUrbanaUSA
  22. 22.Department of PhysicsUniversity of IllinoisUrbanaUSA
  23. 23.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  24. 24.Physics DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  25. 25.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  26. 26.Dunlap Institute for Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  27. 27.Three-Speed Logic, Inc.VancouverCanada
  28. 28.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  29. 29.Department of Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  30. 30.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA
  31. 31.Department of PhysicsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations