# Effects of Noise-Induced Coherence on the Performance of Quantum Absorption Refrigerators

- 164 Downloads
- 2 Citations

## Abstract

We study two models of quantum absorption refrigerators with the main focus on discerning the role of noise-induced coherence on their thermodynamic performance. Analogously to the previous studies on quantum heat engines, we find the increase in the cooling power due to the mechanism of noise-induced coherence. We formulate conditions imposed on the microscopic parameters of the models under which they can be equivalently described by classical stochastic processes and compare the performance of the two classes of fridges (effectively classical vs. truly quantum). We find that the enhanced performance is observed already for the effectively classical systems, with no significant qualitative change in the quantum cases, which suggests that the noise-induced-coherence-enhancement mechanism is caused by static interference phenomena.

## Keywords

Noise-induced coherence Quantum heat engines Absorption refrigerators## Notes

### Acknowledgements

We thank Clive Emary, Radim Filip, Karel Netočný, and Artem Ryabov for valuable discussions. This work was supported by the Czech Science Foundation (Project No. 17-06716S). VH in addition gratefully acknowledges the support by the COST Action MP1209 and by the Alexander von Humboldt foundation.

## Supplementary material

## References

- 1.M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science
**299**(5608), 862 (2003). https://doi.org/10.1126/science.1078955 ADSCrossRefGoogle Scholar - 2.R. Dillenschneider, E. Lutz, Europhys. Lett. (EPL)
**88**(5), 50003 (2009)ADSCrossRefGoogle Scholar - 3.O. Abah, E. Lutz, Europhys. Lett. (EPL)
**106**(2), 20001 (2014)ADSCrossRefGoogle Scholar - 4.J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett.
**112**, 030602 (2014). https://doi.org/10.1103/PhysRevLett.112.030602 ADSCrossRefGoogle Scholar - 5.J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X
**7**, 031044 (2017). https://doi.org/10.1103/PhysRevX.7.031044 Google Scholar - 6.M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci.
**108**(37), 15097 (2011). https://doi.org/10.1073/pnas.1110234108 ADSCrossRefGoogle Scholar - 7.A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Phys. Rev. A
**84**, 053818 (2011). https://doi.org/10.1103/PhysRevA.84.053818 ADSCrossRefGoogle Scholar - 8.A. Svidzinsky, K. Dorfman, M. Scully, Coherent Opt. Phenom.
**1**, 7 (2012). https://doi.org/10.2478/coph-2012-0002 ADSGoogle Scholar - 9.K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Proc. Natl. Acad. Sci.
**110**(8), 2746 (2013). https://doi.org/10.1073/pnas.12126661 ADSCrossRefGoogle Scholar - 10.T.V. Tscherbul, P. Brumer, Phys. Rev. Lett.
**113**, 113601 (2014). https://doi.org/10.1103/PhysRevLett.113.113601 ADSCrossRefGoogle Scholar - 11.N. Killoran, S.F. Huelga, M.B. Plenio, J. Chem. Phys.
**143**(15), 155102 (2015). https://doi.org/10.1063/1.4932307 ADSCrossRefGoogle Scholar - 12.D. Xu, C. Wang, Y. Zhao, J. Cao, New J. Phys.
**18**(2), 023003 (2016)ADSCrossRefGoogle Scholar - 13.A. Dodin, T.V. Tscherbul, P. Brumer, J. Chem. Phys.
**145**(24), 244313 (2016). https://doi.org/10.1063/1.4972140 ADSCrossRefGoogle Scholar - 14.S.H. Su, C.P. Sun, S.W. Li, J.C. Chen, Phys. Rev. E
**93**, 052103 (2016). https://doi.org/10.1103/PhysRevE.93.052103 ADSCrossRefGoogle Scholar - 15.A. Streltsov, G. Adesso, M.B. Plenio, Rev. Mod. Phys.
**89**, 041003 (2017). https://doi.org/10.1103/RevModPhys.89.041003 ADSCrossRefGoogle Scholar - 16.C. Creatore, M.A. Parker, S. Emmott, A.W. Chin, Phys. Rev. Lett.
**111**, 253601 (2013). https://doi.org/10.1103/PhysRevLett.111.253601 ADSCrossRefGoogle Scholar - 17.H.B. Chen, P.Y. Chiu, Y.N. Chen, Phys. Rev. E
**94**, 052101 (2016). https://doi.org/10.1103/PhysRevE.94.052101 ADSCrossRefGoogle Scholar - 18.A. Levy, R. Kosloff, Phys. Rev. Lett.
**108**, 070604 (2012). https://doi.org/10.1103/PhysRevLett.108.070604 ADSCrossRefGoogle Scholar - 19.L.A. Correa, J.P. Palao, G. Adesso, D. Alonso, Phys. Rev. E
**87**, 042131 (2013). https://doi.org/10.1103/PhysRevE.87.042131 ADSCrossRefGoogle Scholar - 20.J.B. Brask, N. Brunner, Phys. Rev. E
**92**, 062101 (2015). https://doi.org/10.1103/PhysRevE.92.062101 ADSCrossRefGoogle Scholar - 21.L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Sci. Rep.
**4**, srep03949 (2014)ADSGoogle Scholar - 22.R. Silva, P. Skrzypczyk, N. Brunner, Phys. Rev. E
**92**, 012136 (2015). https://doi.org/10.1103/PhysRevE.92.012136 ADSCrossRefGoogle Scholar - 23.J.O. González, J.P. Palao, D. Alonso, New J. Phys.
**19**(11), 113037 (2017)CrossRefGoogle Scholar - 24.P.P. Hofer, M.T. Mitchison, arXiv preprint arXiv:1803.06133 (2018)
- 25.C. Emary, N. Lambert, F. Nori, Rep. Prog. Phys.
**77**(1), 016001 (2014)ADSCrossRefGoogle Scholar - 26.C. Cohen-Tannoudji, B. Diu, F. Laloë,
*Quantum Mechanics*(Wiley, Hoboken, 1977)zbMATHGoogle Scholar - 27.H.P. Breuer, F. Petruccione,
*The Theory of Open Quantum Systems*(Oxford University Press, Oxford, 2002)zbMATHGoogle Scholar - 28.W.E. Lamb, R.C. Retherford, Phys. Rev.
**72**, 241 (1947). https://doi.org/10.1103/PhysRev.72.241 ADSCrossRefGoogle Scholar - 29.G. Bulnes Cuetara, M. Esposito, G. Schaller, Entropy
**18**(12), 447 (2016). https://doi.org/10.3390/e18120447 ADSCrossRefGoogle Scholar - 30.H.J. Carmichael,
*Statistical Methods in Quantum Optics 2: Non-Classical Fields*(Springer, Berlin, 2009)Google Scholar - 31.K. Joulain, J. Drevillon, Y. Ezzahri, J. Ordonez-Miranda, Phys. Rev. Lett.
**116**, 200601 (2016). https://doi.org/10.1103/PhysRevLett.116.200601 ADSCrossRefGoogle Scholar - 32.A. Friedenberger, E. Lutz, Europhys. Lett. (EPL)
**120**(1), 10002 (2017)ADSCrossRefGoogle Scholar - 33.K. Brandner, U. Seifert, Phys. Rev. E
**93**, 062134 (2016). https://doi.org/10.1103/PhysRevE.93.062134 ADSCrossRefGoogle Scholar - 34.B. Karimi, J.P. Pekola, Phys. Rev. B
**94**, 184503 (2016). https://doi.org/10.1103/PhysRevB.94.184503 ADSCrossRefGoogle Scholar - 35.K. Brandner, M. Bauer, U. Seifert, Phys. Rev. Lett.
**119**, 170602 (2017). https://doi.org/10.1103/PhysRevLett.119.170602 ADSCrossRefGoogle Scholar - 36.A. Roulet, S. Nimmrichter, J.M. Arrazola, S. Seah, V. Scarani, Phys. Rev. E
**95**, 062131 (2017). https://doi.org/10.1103/PhysRevE.95.062131 ADSCrossRefGoogle Scholar - 37.S. Nimmrichter, J. Dai, A. Roulet, V. Scarani, Quantum
**1**, 37 (2017). https://doi.org/10.22331/q-2017-12-11-37 CrossRefGoogle Scholar - 38.G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich, arXiv preprint arXiv:1702.08672 (2017)
- 39.M. Łobejko, J. Łuczka, J. Dajka, Phys. Rev. A
**91**, 042113 (2015). https://doi.org/10.1103/PhysRevA.91.042113 ADSCrossRefGoogle Scholar - 40.C.W. Gardiner, P. Zoller,
*Quantum Noise*, 2nd edn. (Springer, Berlin, 2000)CrossRefzbMATHGoogle Scholar