Advertisement

Journal of Low Temperature Physics

, Volume 192, Issue 3–4, pp 147–168 | Cite as

Effects of Noise-Induced Coherence on the Performance of Quantum Absorption Refrigerators

  • Viktor Holubec
  • Tomáš Novotný
Article

Abstract

We study two models of quantum absorption refrigerators with the main focus on discerning the role of noise-induced coherence on their thermodynamic performance. Analogously to the previous studies on quantum heat engines, we find the increase in the cooling power due to the mechanism of noise-induced coherence. We formulate conditions imposed on the microscopic parameters of the models under which they can be equivalently described by classical stochastic processes and compare the performance of the two classes of fridges (effectively classical vs. truly quantum). We find that the enhanced performance is observed already for the effectively classical systems, with no significant qualitative change in the quantum cases, which suggests that the noise-induced-coherence-enhancement mechanism is caused by static interference phenomena.

Keywords

Noise-induced coherence Quantum heat engines Absorption refrigerators 

Notes

Acknowledgements

We thank Clive Emary, Radim Filip, Karel Netočný, and Artem Ryabov for valuable discussions. This work was supported by the Czech Science Foundation (Project No. 17-06716S). VH in addition gratefully acknowledges the support by the COST Action MP1209 and by the Alexander von Humboldt foundation.

Supplementary material

References

  1. 1.
    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299(5608), 862 (2003).  https://doi.org/10.1126/science.1078955 ADSCrossRefGoogle Scholar
  2. 2.
    R. Dillenschneider, E. Lutz, Europhys. Lett. (EPL) 88(5), 50003 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    O. Abah, E. Lutz, Europhys. Lett. (EPL) 106(2), 20001 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014).  https://doi.org/10.1103/PhysRevLett.112.030602 ADSCrossRefGoogle Scholar
  5. 5.
    J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017).  https://doi.org/10.1103/PhysRevX.7.031044 Google Scholar
  6. 6.
    M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. 108(37), 15097 (2011).  https://doi.org/10.1073/pnas.1110234108 ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Phys. Rev. A 84, 053818 (2011).  https://doi.org/10.1103/PhysRevA.84.053818 ADSCrossRefGoogle Scholar
  8. 8.
    A. Svidzinsky, K. Dorfman, M. Scully, Coherent Opt. Phenom. 1, 7 (2012).  https://doi.org/10.2478/coph-2012-0002 ADSGoogle Scholar
  9. 9.
    K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Proc. Natl. Acad. Sci. 110(8), 2746 (2013).  https://doi.org/10.1073/pnas.12126661 ADSCrossRefGoogle Scholar
  10. 10.
    T.V. Tscherbul, P. Brumer, Phys. Rev. Lett. 113, 113601 (2014).  https://doi.org/10.1103/PhysRevLett.113.113601 ADSCrossRefGoogle Scholar
  11. 11.
    N. Killoran, S.F. Huelga, M.B. Plenio, J. Chem. Phys. 143(15), 155102 (2015).  https://doi.org/10.1063/1.4932307 ADSCrossRefGoogle Scholar
  12. 12.
    D. Xu, C. Wang, Y. Zhao, J. Cao, New J. Phys. 18(2), 023003 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Dodin, T.V. Tscherbul, P. Brumer, J. Chem. Phys. 145(24), 244313 (2016).  https://doi.org/10.1063/1.4972140 ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Su, C.P. Sun, S.W. Li, J.C. Chen, Phys. Rev. E 93, 052103 (2016).  https://doi.org/10.1103/PhysRevE.93.052103 ADSCrossRefGoogle Scholar
  15. 15.
    A. Streltsov, G. Adesso, M.B. Plenio, Rev. Mod. Phys. 89, 041003 (2017).  https://doi.org/10.1103/RevModPhys.89.041003 ADSCrossRefGoogle Scholar
  16. 16.
    C. Creatore, M.A. Parker, S. Emmott, A.W. Chin, Phys. Rev. Lett. 111, 253601 (2013).  https://doi.org/10.1103/PhysRevLett.111.253601 ADSCrossRefGoogle Scholar
  17. 17.
    H.B. Chen, P.Y. Chiu, Y.N. Chen, Phys. Rev. E 94, 052101 (2016).  https://doi.org/10.1103/PhysRevE.94.052101 ADSCrossRefGoogle Scholar
  18. 18.
    A. Levy, R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012).  https://doi.org/10.1103/PhysRevLett.108.070604 ADSCrossRefGoogle Scholar
  19. 19.
    L.A. Correa, J.P. Palao, G. Adesso, D. Alonso, Phys. Rev. E 87, 042131 (2013).  https://doi.org/10.1103/PhysRevE.87.042131 ADSCrossRefGoogle Scholar
  20. 20.
    J.B. Brask, N. Brunner, Phys. Rev. E 92, 062101 (2015).  https://doi.org/10.1103/PhysRevE.92.062101 ADSCrossRefGoogle Scholar
  21. 21.
    L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Sci. Rep. 4, srep03949 (2014)ADSGoogle Scholar
  22. 22.
    R. Silva, P. Skrzypczyk, N. Brunner, Phys. Rev. E 92, 012136 (2015).  https://doi.org/10.1103/PhysRevE.92.012136 ADSCrossRefGoogle Scholar
  23. 23.
    J.O. González, J.P. Palao, D. Alonso, New J. Phys. 19(11), 113037 (2017)CrossRefGoogle Scholar
  24. 24.
    P.P. Hofer, M.T. Mitchison, arXiv preprint arXiv:1803.06133 (2018)
  25. 25.
    C. Emary, N. Lambert, F. Nori, Rep. Prog. Phys. 77(1), 016001 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, Hoboken, 1977)zbMATHGoogle Scholar
  27. 27.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)zbMATHGoogle Scholar
  28. 28.
    W.E. Lamb, R.C. Retherford, Phys. Rev. 72, 241 (1947).  https://doi.org/10.1103/PhysRev.72.241 ADSCrossRefGoogle Scholar
  29. 29.
    G. Bulnes Cuetara, M. Esposito, G. Schaller, Entropy 18(12), 447 (2016).  https://doi.org/10.3390/e18120447 ADSCrossRefGoogle Scholar
  30. 30.
    H.J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer, Berlin, 2009)Google Scholar
  31. 31.
    K. Joulain, J. Drevillon, Y. Ezzahri, J. Ordonez-Miranda, Phys. Rev. Lett. 116, 200601 (2016).  https://doi.org/10.1103/PhysRevLett.116.200601 ADSCrossRefGoogle Scholar
  32. 32.
    A. Friedenberger, E. Lutz, Europhys. Lett. (EPL) 120(1), 10002 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    K. Brandner, U. Seifert, Phys. Rev. E 93, 062134 (2016).  https://doi.org/10.1103/PhysRevE.93.062134 ADSCrossRefGoogle Scholar
  34. 34.
    B. Karimi, J.P. Pekola, Phys. Rev. B 94, 184503 (2016).  https://doi.org/10.1103/PhysRevB.94.184503 ADSCrossRefGoogle Scholar
  35. 35.
    K. Brandner, M. Bauer, U. Seifert, Phys. Rev. Lett. 119, 170602 (2017).  https://doi.org/10.1103/PhysRevLett.119.170602 ADSCrossRefGoogle Scholar
  36. 36.
    A. Roulet, S. Nimmrichter, J.M. Arrazola, S. Seah, V. Scarani, Phys. Rev. E 95, 062131 (2017).  https://doi.org/10.1103/PhysRevE.95.062131 ADSCrossRefGoogle Scholar
  37. 37.
    S. Nimmrichter, J. Dai, A. Roulet, V. Scarani, Quantum 1, 37 (2017).  https://doi.org/10.22331/q-2017-12-11-37 CrossRefGoogle Scholar
  38. 38.
    G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich, arXiv preprint arXiv:1702.08672 (2017)
  39. 39.
    M. Łobejko, J. Łuczka, J. Dajka, Phys. Rev. A 91, 042113 (2015).  https://doi.org/10.1103/PhysRevA.91.042113 ADSCrossRefGoogle Scholar
  40. 40.
    C.W. Gardiner, P. Zoller, Quantum Noise, 2nd edn. (Springer, Berlin, 2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Macromolecular Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  3. 3.Department of Condensed Matter Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations