Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 5–6, pp 1103–1111 | Cite as

Advanced ACTPol Low-Frequency Array: Readout and Characterization of Prototype 27 and 39 GHz Transition Edge Sensors

  • B. J. KoopmanEmail author
  • N. F. Cothard
  • S. K. Choi
  • K. T. Crowley
  • S. M. Duff
  • S. W. Henderson
  • S. P. Ho
  • J. Hubmayr
  • P. A. Gallardo
  • F. Nati
  • M. D. Niemack
  • S. M. Simon
  • S. T. Staggs
  • J. R. Stevens
  • E. M. Vavagiakis
  • E. J. Wollack
Article

Abstract

Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as \({\sim }\,1\) pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.

Keywords

Cosmic microwave background Transition edge sensor Bolometer Polarimetry Advanced ACTPol Synchrotron 

Notes

Acknowledgements

This work was supported by the US National Science Foundation through Award 1440226. The development of multichroic detectors and lenses was supported by NASA Grants NNX13AE56G and NNX14AB58G. The work of KPC, KTC, BJK, and JTW was supported by NASA Space Technology Research Fellowship awards.

References

  1. 1.
    R.J. Thornton et al., ApJS 227, 21 (2016).  https://doi.org/10.3847/1538-4365/227/2/21 ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Fowler et al., Appl. Opt. 46(17), 3444 (2007).  https://doi.org/10.1364/AO.46.003444 ADSCrossRefGoogle Scholar
  3. 3.
    S.W. Henderson et al., J. Low Temp. Phys. 184(3), 772 (2016).  https://doi.org/10.1007/s10909-016-1575-z ADSCrossRefGoogle Scholar
  4. 4.
    S.M. Simon et al., J. Low Temp. Phys. This Special Issue (2018)Google Scholar
  5. 5.
    D. Li et al., J. Low Temp. Phys. 184(1), 66 (2016).  https://doi.org/10.1007/s10909-016-1526-8 ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Duff. et al., J. Low Temp. Phys. This Special Issue (2018)Google Scholar
  7. 7.
    J.P. Filippini et al., in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, Volume 7741 of Proceedings of SPIE (2010), p. 77411N.  https://doi.org/10.1117/12.857720
  8. 8.
    K. Irwin, G. Hilton, Transition-Edge Sensors (Springer, Berlin, 2005), pp. 63–150Google Scholar
  9. 9.
    K.D. Irwin et al., J. Appl. Phys. 83(8), 3978 (1998).  https://doi.org/10.1063/1.367153 ADSCrossRefGoogle Scholar
  10. 10.
    S.W. Henderson et al., in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Volume 9914 of Proceedings of SPIE (2016), pp. 99141G.  https://doi.org/10.1117/12.2233895
  11. 11.
    K. Crowley et al., J. Low Temp. Phys. This Special Issue (2018)Google Scholar
  12. 12.
    S.K. Choi et al., J. Low Temp. Phys. This Special Issue (2018)Google Scholar
  13. 13.
    E.S. Battistelli et al., J. Low Temp. Phys. 151, 908 (2008).  https://doi.org/10.1007/s10909-008-9772-z ADSCrossRefGoogle Scholar
  14. 14.
    J. Beyer, D. Drung, Supercond. Sci. Technol. 21(10), 105022 (2008).  https://doi.org/10.1088/0953-2048/21/10/105022 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. J. Koopman
    • 1
    Email author return OK on get
  • N. F. Cothard
    • 2
  • S. K. Choi
    • 3
  • K. T. Crowley
    • 3
  • S. M. Duff
    • 4
  • S. W. Henderson
    • 5
  • S. P. Ho
    • 3
  • J. Hubmayr
    • 4
  • P. A. Gallardo
    • 1
  • F. Nati
    • 6
  • M. D. Niemack
    • 1
  • S. M. Simon
    • 7
  • S. T. Staggs
    • 3
  • J. R. Stevens
    • 1
  • E. M. Vavagiakis
    • 1
  • E. J. Wollack
    • 8
  1. 1.Department of PhysicsCornell UniversityIthacaUSA
  2. 2.Department of Applied and Engineering PhysicsCornell UniversityIthacaUSA
  3. 3.Joseph Henry Laboratories of Physics, Jadwin HallPrinceton UniversityPrincetonUSA
  4. 4.NIST Quantum Devices GroupBoulderUSA
  5. 5.SLAC National Accelerator LaboratoryKavli Institute for Particle Astrophysics and CosmologyMenlo ParkUSA
  6. 6.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Department of PhysicsUniversity of MichiganAnn ArborUSA
  8. 8.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations