Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 276–281 | Cite as

Twin-Slot Antenna-Coupled Superconducting Ti Transition-Edge Sensor at 350 GHz

  • W. Zhang
  • W. Miao
  • Z. Wang
  • X. H. Guo
  • D. Liu
  • J. Q. Zhong
  • Q. J. Yao
  • S. C. Shi
Article
  • 80 Downloads

Abstract

We have developed four-leg-supported superconducting Ti transition-edge sensors (TES) formed by KOH wet etching. Energy relaxation mechanism is changed from electron–phonon coupling to diffusive phonon after wet etching. The current–voltage curves of the same TES device were measured before and after wet etching. After wet etching, its thermal conductance (G) is reduced to 500 pW/K from 8950 pW/K. The measured effective response time (τeff) is 143 μs, about 30 times larger. In addition, we have studied the optical noise equivalent power (NEP) with a cryogenic blackbody in combination with metal-mesh filters to define the radiation bandwidth. The obtained optical NEP is 5 × 10−16 W/√Hz, which is suitable for ground-based astronomical applications.

Keywords

Transition-edge sensor Thermal conductance Noise equivalent power Optical response 

Notes

Acknowledgements

This work was supported in part by National Key R&D program of China under Grant 2017YFA0304003, NSFC under Grants 11673073, 11190012, 11473075, and by the CAS Joint Key Lab for Radio Astronomy.

References

  1. 1.
    W.S. Holland, D. Bintley, E.L. Chapin, A. Chrysostomou, G.R. Davis et al., Mon. Not. R. Astron. Soc. 430, 2513 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    B.S. Karasik, R. Cantor, Appl. Phys. Lett. 98, 193503 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    B.S. Karasik, S.V. Pereverzev, D. Olaya, M.E. Gershenson, R. Cantor et al., Proc. SPIE 7741, 774119 (2010)CrossRefGoogle Scholar
  4. 4.
    W. Zhang, J.Q. Zhong, W. Miao, Z. Wang, D. Liu et al., J. Low Temp. Phys. 184, 11–16 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    D. Prele, F. Voisin, M. Piat, T. Decourcelle, C. Perbost et al., J. Low Temp. Phys. 184, 363–368 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    W. Zhang, W. Miao, Z. Wang, D. Liu, J.Q. Zhong et al., IEEE Trans. Appl. Supercond. 27, 2100606 (2017)Google Scholar
  7. 7.
    K.D. Irwin, G.C. Hilton, J.M. Martinis, S. Deiker, N. Bergren et al., Nucl. Instrum. Methods Phys. Res. A 444, 184 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Triton TM 200/400, Cryofree Dilution Refrigerator, Issue 3.0 (Oxford Instruments, Abingdon, 2012)Google Scholar
  9. 9.
    High performance DC SQUID electronics, XXF-1 manual, v3.3.11. Magnicon Phys. Res. Instrum., Hamburg, Germany (2013)Google Scholar
  10. 10.
    J.A. Bonetti, P. Day, M. Kenyon, A. Turner, H.G. LeDuc et al., J. Low Temp. Phys. 151, 138–143 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    L. Lolli, E. Taralli, M. Rajteri, T. Numata, D. Fukuda, I.E.E.E. Trans, Appl. Supercond. 23, 2100904 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Purple Mountain ObservatoryCASNanjingChina
  2. 2.Key Lab of Radio AstronomyCASNanjingChina

Personalised recommendations