Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 120–127 | Cite as

Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond

  • J. E. Austermann
  • J. A. Beall
  • S. A. Bryan
  • B. Dober
  • J. Gao
  • G. Hilton
  • J. Hubmayr
  • P. Mauskopf
  • C. M. McKenney
  • S. M. Simon
  • J. N. Ullom
  • M. R. Vissers
  • G. W. Wilson
Article

Abstract

Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise \(\sim 7000\) polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over \(10^5\) detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.

Keywords

KID MKID Millimeter Sub-mm THz Polarimetry TolTEC LMT 

Notes

Acknowledgements

This work is supported by the NSF of the USA through Grant MSIP-1636621 and NASA through Grant APRA13-0083.

References

  1. 1.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817–821 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    S. R. Golwala, C. Bockstiegel, S. Brugger, N. G. Czakon, P. K. Day, T. P. Downes, R. Duan, J. Gao, A. K. Gill, J. Glenn, M. I. Hollister, H. G. LeDuc, P. R. Maloney, B. A. Mazin, S. G. McHugh, D. Miller, O. Noroozian, H. T. Nguyen, J. Sayers, J. A. Schlaerth, S. Siegel, A. K. Vayonakis, P. R. Wilson, and J. Zmuidzinas, “Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera,” in Proc. SPIE, 2012, vol. 8452 of Proc. SPIEGoogle Scholar
  3. 3.
    M. Calvo, A. Benoît, A. Catalano, J. Goupy, A. Monfardini, N. Ponthieu, E. Barria, G. Bres, M. Grollier, G. Garde, J.-P. Leggeri, G. Pont, S. Triqueneaux, R. Adam, O. Bourrion, J.-F. Macías-Pérez, M. Rebolo, A. Ritacco, J.-P. Scordilis, D. Tourres, A. Adane, G. Coiffard, S. Leclercq, F.-X. Désert, S. Doyle, P. Mauskopf, C. Tucker, P. Ade, P. André, A. Beelen, B. Belier, A. Bideaud, N. Billot, B. Comis, A. D’Addabbo, C. Kramer, J. Martino, F. Mayet, F. Pajot, E. Pascale, L. Perotto, V. Revéret, A. Ritacco, L. Rodriguez, G. Savini, K. Schuster, A. Sievers, R. Zylka, J. Low Temp. Phys. 184, 816–823 (2016).  https://doi.org/10.1007/s10909-016-1582-0. ISSN 1573-7357ADSCrossRefGoogle Scholar
  4. 4.
    J. Hubmayr, J. Beall, D. Becker, H.-M. Cho, M. Devlin, B. Dober, C. Groppi, G.C. Hilton, K.D. Irwin, D. Li, P. Mauskopf, D.P. Pappas, J. Van Lanen, M.R. Vissers, Y. Wang, L.F. Wei, J. Gao, Appl. Phys. Lett. 106, 073505 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    B. Dober, J. Austermann, J. Beall, D. Becker, G. Che, H. Cho, M. Devlin, S. Duff, N. Galitzki, J. Gao et al., J. Low Temp. Phys. 184, 173–179 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    E. Shirokoff, P. Barry, C. Bradford, G. Chattopadhyay, P. Day, S. Doyle, S. Hailey-Dunsheath, M. Hollister, A. Kovács, H. Leduc et al., J. Low Temp. Phys. 176, 657–662 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    B. Mazin, S.R. Meeker, M. Strader, P. Szypryt, D. Marsden, J. van Eyken, G. Duggan, A. Walter, G. Ulbricht, M. Johnson et al., Publ. Astron. Soc. Pac. 125, 1348 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    O. Bourrion, A. Benoit, J. Bouly, J. Bouvier, G. Bosson, M. Calvo, A. Catalano, J. Goupy, C. Li, J. Macías-Pérez et al., J. Instrum. 11, P11001 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Galitzki, P.A. Ade, F.E. Angilè, P. Ashton, J.A. Beall, D. Becker, K.J. Bradford, G. Che, H.-M. Cho, M.J. Devlin et al., J. Astron. Instrum. 3, 1440001 (2014)CrossRefGoogle Scholar
  10. 10.
    P. A. R. Ade, G. Pisano, C. Tucker, S. Weaver, “A review of metal mesh filters,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2006, vol. 6275 of Proc. SPIE, p. 62750UGoogle Scholar
  11. 11.
    X. Liu, W. Guo, Y. Wang, M. Dai, L. Wei, B. Dober, C. McKenney, G. Hilton, J. Hubmayr, J. Austermann et al., Appl. Phys. Lett. 111, 252601 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    C. M. McKenney, J. E. Austermann, J. Beall, B. Dober, S. M. Duff, J. Gao, G. Hilton, J. Hubmayr, D. Li, J. Ullom, J. Van Lanen, M. R. Vissers, submitted (2018)Google Scholar
  13. 13.
    M.R. Vissers, J. Gao, M. Sandberg, S.M. Duff, D.S. Wisbey, K.D. Irwin, D.P. Pappas, Appl. Phys. Lett. 102, 232603 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    M.R. Vissers, J. Gao, D.S. Wisbey, D.A. Hite, C.C. Tsuei, A.D. Corcoles, M. Steffen, D.P. Pappas, Appl. Phys. Lett. 97, 232509 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S.M. Simon, J. Austermann, J.A. Beall, S.K. Choi, K.P. Coughlin, S.M. Duff, P.A. Gallardo, S.W. Henderson, F.B. Hills, S.-P.P. Ho et al., “The design and characterization of wideband spline-profiled feedhorns for Advanced ACTPol,” in Millimeter. Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, International Society for Optics and Photonics 9914, 991416 (2016)Google Scholar
  16. 16.
    S. Yates, J. Baselmans, A. Endo, R. Janssen, L. Ferrari, P. Diener, A. Baryshev, Appl. Phys. Lett. 99, 073505 (2011)ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • J. E. Austermann
    • 1
  • J. A. Beall
    • 1
  • S. A. Bryan
    • 2
  • B. Dober
    • 1
  • J. Gao
    • 1
  • G. Hilton
    • 1
  • J. Hubmayr
    • 1
  • P. Mauskopf
    • 2
  • C. M. McKenney
    • 1
  • S. M. Simon
    • 3
  • J. N. Ullom
    • 1
  • M. R. Vissers
    • 1
  • G. W. Wilson
    • 4
  1. 1.Quantum Sensors GroupNational Institute of Standards and TechnologyBoulderUSA
  2. 2.Arizona State UniversityTempeUSA
  3. 3.University of MichiganAnn ArborUSA
  4. 4.University of MassachusettsAmherstUSA

Personalised recommendations