Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 5–6, pp 681–686 | Cite as

A Path to High-Efficiency Optical Coupling for HIRMES

  • Timothy M. MillerEmail author
  • Ari-David Brown
  • Nicholas Costen
  • David Franz
  • Alexander Kutyrev
  • Vilem Mikula
  • Kevin H. Miller
  • S. Harvey Moseley
  • Joseph Oxborrow
  • Karwan Rostem
  • Edward J. Wollack
Article
  • 62 Downloads

Abstract

The high-resolution mid-infrared spectrometer (HIRMES) under development for Stratospheric Observatory for Infrared Astronomy is an instrument operating in the 25–122 μm spectral range with a spectral resolution R = Δλ/λ ~ 100,000 and has two absorber-coupled transition edge sensor bolometric detector focal planes. We have developed novel NbTiN low-stress absorber coatings which have the required optical impedance across the HIRMES operating band. The low intrinsic stress of these coatings allow for a peak-to-valley corrugation amplitude < 5 μm of the 450 nm thick, 1.4 mm × 1.7 mm detector pixels. Furthermore, these coatings have a superconducting transition temperature ~ 10 K, which allows them to simultaneously serve as an absorber in the desired signal band and a rejection filter at long wavelengths. This attribute makes them especially attractive for ultrasensitive absorber-coupled bolometric detector applications, because it helps in controlling the optical loading from out-of-band radiation. We also discuss a novel method for integrating a wedged-reflective absorber termination to the detector array.

Keywords

Transition edge sensor HIRMES Bolometer Optical coupling 

Notes

Acknowledgements

This work was supported by a SOFIA Third Generation Instrument Award. The authors gratefully acknowledge suggestions and discussions with Kevin Denis. Funding was supported by ROSES Solicitation NNH15ZDA001N-S3GSI, proposal number 15-S3CSI_CSR_0003.

References

  1. 1.
  2. 2.
    A.-D. Brown et al, J. Low Temp. Phys. This Special Issue (2018)Google Scholar
  3. 3.
    C. Allen, D.J. Benford, T.M. Miller, S.H. Moseley, J.G. Staguhn, E.J. Wollack, J. Low Temp. Phys. 151, 266–270 (2008).  https://doi.org/10.1007/s10909-007-9646-9 ADSCrossRefGoogle Scholar
  4. 4.
    C.A. Jhabvala et al., SPIE Proc. 9153, 9153C1–9153C12 (2014).  https://doi.org/10.1117/12.2056995 CrossRefGoogle Scholar
  5. 5.
    D.J. Benford, D.T. Chuss, G.C. Hilton, K.D. Irwin, N.S. Jethava, C.A. Jhabvala, A.J. Kogut, T.M. Miller, P. Mirel, S. Harvey Moseley, K. Rostem, E.H. Sharp, J.G. Staguhn, G.M. Stiehl, G.M. Voellmer, E.J. Wollack, 5,120 superconducting bolometers for the PIPER balloon-borne CMB polarization experiment. SPIE Proc. 7741, 77411Q (2010)ADSCrossRefGoogle Scholar
  6. 6.
    B. Carli, D. Iorio-Fili, Absorption of composite bolometer. J. Opt. Soc. Am. 71, 1020–1025 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    The actual membrane-backshort separation distance may have been much shorter due to membrane curvatureGoogle Scholar
  8. 8.
    E.J. Wollack, D.T. Chuss, S.H. Moseley, Electromagnetic considerations for pixellated planar bolometer arrays in the single-mode limit. SPIE Proc. 6275, 62750V (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Yapu, Stiction and anti-stiction in MEMS and NEMS. Acta Mech. Sinica 19, 1–10 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    W.D. Greason, Review of the effect of ESD in MEMS, in Proceedings of the 2010 ESA Ann. Meeting on Electrostatics, University of North Carolina, Charlotte, June 22–24, 2010Google Scholar
  11. 11.
    M.J. Li et al., Electrostatic microshutter arrays, in Transducers 2017 Conference, the 19th International Conference on Solid-State Sensors, Actuators and Microsystems, Kaohsiung, Taiwan, June 18–22, 2017Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • Timothy M. Miller
    • 1
    Email author
  • Ari-David Brown
    • 1
  • Nicholas Costen
    • 1
    • 2
  • David Franz
    • 1
  • Alexander Kutyrev
    • 1
    • 3
  • Vilem Mikula
    • 1
    • 4
  • Kevin H. Miller
    • 1
  • S. Harvey Moseley
    • 1
  • Joseph Oxborrow
    • 5
  • Karwan Rostem
    • 1
    • 3
  • Edward J. Wollack
    • 1
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Stinger Ghaffarian TechnologiesSeabrookUSA
  3. 3.Department of AstronomyUniversity of MarylandCollege ParkUSA
  4. 4.Institute for Astrophysics and Computational ScienceCatholic University of AmericaWashingtonUSA
  5. 5.Scientific and Biomedical MicrosystemsGlen BurnieUSA

Personalised recommendations