Skip to main content

Advertisement

Log in

Comparison of Different Mo/Au TES Designs for Radiation Detectors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on the fabrication and characterization of Mo/Au-based transition-edge sensors (TES), intended to be used in X-ray detectors. We have performed complete dark characterization using IV curves, complex impedance and noise measurements at different bath temperatures and biases. Devices with two designs, different sizes and different membranes have been characterized, some of them with a central bismuth absorber. This has allowed extraction of the relevant parameters of the TES, analyses of their standard behavior and evaluation of their prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.D. Irwin, C.C. Hilton, in Transition-Edge Sensors in Cryogenic Particle Detection, ed. by C. Enss (Springer, Berlin, 2005), vol. 99, pp. 63–149

  2. D.A. Bennett, J.N. Ullom, Review of superconducting TES for X-ray and g-ray astrophysics. Supercond. Sci. Technol. 28, 084003 (2015)

    Article  ADS  Google Scholar 

  3. D. Barret et al., The Athena X-ray integral field unit (X-IFU). Proc. SPIE 9905, 99052F (2016)

    Article  Google Scholar 

  4. L. Fàbrega et al., Mo-based proximity bilayers for TES. IEEE Trans. Appl. Supercond. 19, 460 (2009)

    Article  ADS  Google Scholar 

  5. C. Pobes et al., Development of cryogenic X-ray detectors based on Mo/Au transition edge sensors. IEEE Trans. Appl. Supercond. 27, 2101505 (2017)

    Article  Google Scholar 

  6. P. Strichovanec et al., in preparation

  7. S.J. Smith et al., Transition-edge sensor pixel parameters design of the microcalorimeters array for the X-ray Integral Field Unit on Athena. Proceed. SPIE 9905, 99052H (2016)

    Article  ADS  Google Scholar 

  8. H.F.C. Hoevers et al., Comparative study of TiAu-based TES microcalorimeters with different geometries. J. Low Temp. Phys. 151, 94 (2008)

    Article  ADS  Google Scholar 

  9. J.N. Ullom et al., Characterization and reduction of unexplained noise in superconducting transition-edge sensors. Appl. Phys. Lett. 84, 4206 (1999)

    Article  ADS  Google Scholar 

  10. D.A. Bennett et al., Resistance in transition-edge sensors: a comparison of the resistively shunted junction and two-fluid models. Phys. Rev. B 87, 020508(R) (2013)

    Article  ADS  Google Scholar 

  11. M. Galeazzi, Fundamental noise processes in TES devices. IEEE Trans. Appl. Supercond. 21, 267 (2011)

    Article  ADS  Google Scholar 

  12. I.J. Maasilta, Complex impedance, responsivity and noise of transition-edge sensors: analytical solutions for two- and three-block thermal models. AIP Adv. 2, 042110 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work financed by the Spanish Ministerio de Economía y Competitividad (MINECO, projects ESP2014-59306-JIN, ESP2014-53672-C3-2-P, ESP2016-76683-C3-2-R), the European Space Agency (ESA, CTP Contract “Optimization of a European TES array”) and the European Commission (H2020 project AHEAD: Integrated Activities for the high energy astrophysics domain”). Personnel from ICMAB acknowledge financial support from MINECO, through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-04969). RMJ wishes to thank MINECO for her FPI contract. We also thank PTB for providing the SQUIDs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Pobes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pobes, C., Fàbrega, L., Camón, A. et al. Comparison of Different Mo/Au TES Designs for Radiation Detectors. J Low Temp Phys 193, 282–287 (2018). https://doi.org/10.1007/s10909-018-1936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1936-x

Keywords

Navigation