Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 305–313 | Cite as

Optical Characterization of the SPT-3G Camera

  • Z. Pan
  • P. A. R. Ade
  • Z. Ahmed
  • A. J. Anderson
  • J. E. Austermann
  • J. S. Avva
  • R. Basu Thakur
  • A. N. Bender
  • B. A. Benson
  • J. E. Carlstrom
  • F. W. Carter
  • T. Cecil
  • C. L. Chang
  • J. F. Cliche
  • A. Cukierman
  • E. V. Denison
  • T. de Haan
  • J. Ding
  • M. A. Dobbs
  • D. Dutcher
  • W. Everett
  • A. Foster
  • R. N. Gannon
  • A. Gilbert
  • J. C. Groh
  • N. W. Halverson
  • A. H. Harke-Hosemann
  • N. L. Harrington
  • J. W. Henning
  • G. C. Hilton
  • W. L. Holzapfel
  • N. Huang
  • K. D. Irwin
  • O. B. Jeong
  • M. Jonas
  • T. Khaire
  • A. M. Kofman
  • M. Korman
  • D. Kubik
  • S. Kuhlmann
  • C. L. Kuo
  • A. T. Lee
  • A. E. Lowitz
  • S. S. Meyer
  • D. Michalik
  • J. Montgomery
  • A. Nadolski
  • T. Natoli
  • H. Nguyen
  • G. I. Noble
  • V. Novosad
  • S. Padin
  • J. Pearson
  • C. M. Posada
  • A. Rahlin
  • J. E. Ruhl
  • L. J. Saunders
  • J. T. Sayre
  • I. Shirley
  • E. Shirokoff
  • G. Smecher
  • J. A. Sobrin
  • A. A. Stark
  • K. T. Story
  • A. Suzuki
  • Q. Y. Tang
  • K. L. Thompson
  • C. Tucker
  • L. R. Vale
  • K. Vanderlinde
  • J. D. Vieira
  • G. Wang
  • N. Whitehorn
  • V. Yefremenko
  • K. W. Yoon
  • M. R. Young
Article

Abstract

The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with \(\sim \) 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.

Keywords

Cosmic microwave background Transition-edge sensor Fourier transform spectrometer Frequency bands Optical efficiency Time constant Beam Polarization 

Notes

Acknowledgements

The South Pole Telescope is supported by the National Science Foundation (NSF) through Grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, and the Kavli Foundation and the Gordon and Betty Moore Foundation Grant GBMF 947. Work at Argonne National Laboratory, including Laboratory Directed Research and Development support and use of the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science (DOE-OS) user facility, was supported under Contract No. DE-AC02-06CH11357. Work at Fermi National Accelerator Laboratory, a DOE-OS, HEP User Facility managed by the Fermi Research Alliance, LLC, was supported under Contract No. DE-AC02-07CH11359. NWH acknowledges support from NSF CAREER Grant AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program.

References

  1. 1.
    A. Lewis et al., Phys. Rev. D 66(10), 103511 (2002).  https://doi.org/10.1103/PhysRevD.66.103511 ADSCrossRefGoogle Scholar
  2. 2.
    D. Baumann et al., AIP Conf. Proc. 1141(1), 10 (2009).  https://doi.org/10.1063/1.3160885 ADSCrossRefGoogle Scholar
  3. 3.
    K. Ichikawa, Phys. Rev. D 71(4), 043001 (2005).  https://doi.org/10.1103/PhysRevD.71.043001 ADSCrossRefGoogle Scholar
  4. 4.
    J. Lesgourgues, Phys. Rev. D 73(4), 045021 (2006).  https://doi.org/10.1103/PhysRevD.73.045021 ADSCrossRefGoogle Scholar
  5. 5.
    J. Carlstrom et al., Annu. Rev. Astron. Astrophys. 40(1), 643–680 (2002).  https://doi.org/10.1146/annurev.astro.40.060401.093803 ADSCrossRefGoogle Scholar
  6. 6.
    R.J. Thornton et al., APJ Suppl. Ser. 227(2), 21 (2016).  https://doi.org/10.3847/1538-4365/227/2/21 ADSCrossRefGoogle Scholar
  7. 7.
    K. Arnold et al., Proc. SPIE 7741, 77411E (2010).  https://doi.org/10.1117/12.858314 CrossRefGoogle Scholar
  8. 8.
    Z. Ahmed et al., SPIE Astronomical Telescope + Instrumentation, p. 91531N (2014).  https://doi.org/10.1117/12.2057224
  9. 9.
    C.D. Sheehy et al., arXiv preprint arXiv:1104.5516 (2011)
  10. 10.
    J.P. Filippini et al., arXiv preprint arXiv:1106.2158 (2011)
  11. 11.
    M.D. Niemack et al., J. Low Temp. Phys. 184(3–4), 746–753 (2016).  https://doi.org/10.1007/s10909-015-1395-6 ADSCrossRefGoogle Scholar
  12. 12.
    G. Marsden et al., arXiv preprint arXiv:0805.4420 (2008)
  13. 13.
    B.A. Benson et al., SPIE Astronomical Telescopes + Instrumentation, p. 91531P (2014).  https://doi.org/10.1117/12.2057305
  14. 14.
    A. Anderson et al., J. Low Temp. Phys. This special issue (2018)Google Scholar
  15. 15.
    W. Everett et al., J. Low Temp. Phys. This special issue (2018)Google Scholar
  16. 16.
    J.E. Carlstrom, Publ. Astron. Soc. Pac. 123(903), 568 (2011).  https://doi.org/10.1086/659879 ADSCrossRefGoogle Scholar
  17. 17.
    Laird Technology, Product Eccosorb HR. http://www.eccosorb.com/products-eccosorb-hr.htm. Accessed 7 May 2018
  18. 18.
    C.M. Posada et al., Supercond. Sci. Technol. 28, 094002 (2015).  https://doi.org/10.1088/0953-2048/28/9/094002 ADSCrossRefGoogle Scholar
  19. 19.
    C.M. Posada et al., J. Low Temp. Phys. This special issue (2018).  https://doi.org/10.1007/s10909-018-1924-1
  20. 20.
    F.W. Carter et al., J. Low Temp. Phys. This special issue (2018).  https://doi.org/10.1007/s10909-018-1910-7
  21. 21.
    J. Ding et al., IEEE Trans. Appl. Supercond. 27, 2100204 (2017).  https://doi.org/10.1109/TASC.2016.2639378 CrossRefGoogle Scholar
  22. 22.
    J. Ding et al., J. Low Temp. Phys. This special issue (2018). https://doi.org/10.1007/s10909-018-1907-2
  23. 23.
    A.N. Bender, SPIE Astronomical Telescopes+ Instrumentation, vol. 9914, p. 99141D (2016).  https://doi.org/10.1117/12.2232146
  24. 24.
    J. Avva et al., J. Low Temp. Phys. This special issue (2018)Google Scholar
  25. 25.
    D.H. Martin, E. Puplett, Infrared Phys. 10(2), 105–109 (1970).  https://doi.org/10.1016/0020-0891(70)90006-0 ADSCrossRefGoogle Scholar
  26. 26.
    A. Kogut et al., J. Cosmol. Astropart. Phys. 07, 025 (2011).  https://doi.org/10.1088/1475-7516/2011/07/025 ADSCrossRefGoogle Scholar
  27. 27.
    K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection (Springer, Berlin, 2005), pp. 81–97.  https://doi.org/10.1007/10933596_3 CrossRefGoogle Scholar
  28. 28.
    Thomas Keating Ltd., Product Tessellating TeraHertz RAMs. http://www.terahertz.co.uk/index.php?option=com_content&view=article&id=145&Itemid=448. Accessed 7 May 2018
  29. 29.
    Helioworks Inc., Product EF-8530. https://helioworks.com/wp-content/uploads/2016/08/EF-8530.pdf. Accessed 7 May 2018

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Z. Pan
    • 6
    • 12
  • P. A. R. Ade
    • 1
  • Z. Ahmed
    • 2
    • 3
    • 4
  • A. J. Anderson
    • 5
    • 6
  • J. E. Austermann
    • 7
  • J. S. Avva
    • 8
  • R. Basu Thakur
    • 6
  • A. N. Bender
    • 6
    • 9
  • B. A. Benson
    • 5
    • 6
    • 10
  • J. E. Carlstrom
    • 6
    • 9
    • 10
    • 11
    • 12
  • F. W. Carter
    • 6
    • 9
  • T. Cecil
    • 9
  • C. L. Chang
    • 6
    • 9
    • 10
  • J. F. Cliche
    • 13
  • A. Cukierman
    • 8
  • E. V. Denison
    • 7
  • T. de Haan
    • 8
  • J. Ding
    • 14
  • M. A. Dobbs
    • 13
    • 15
  • D. Dutcher
    • 6
    • 12
  • W. Everett
    • 16
  • A. Foster
    • 17
  • R. N. Gannon
    • 14
  • A. Gilbert
    • 13
  • J. C. Groh
    • 8
  • N. W. Halverson
    • 16
    • 18
  • A. H. Harke-Hosemann
    • 9
    • 19
  • N. L. Harrington
    • 8
  • J. W. Henning
    • 6
  • G. C. Hilton
    • 7
  • W. L. Holzapfel
    • 8
  • N. Huang
    • 8
  • K. D. Irwin
    • 2
    • 3
    • 4
  • O. B. Jeong
    • 8
  • M. Jonas
    • 5
  • T. Khaire
    • 14
  • A. M. Kofman
    • 19
    • 20
  • M. Korman
    • 17
  • D. Kubik
    • 5
  • S. Kuhlmann
    • 9
  • C. L. Kuo
    • 2
    • 3
    • 4
  • A. T. Lee
    • 8
    • 21
  • A. E. Lowitz
    • 6
  • S. S. Meyer
    • 6
    • 10
    • 11
    • 12
  • D. Michalik
    • 22
  • J. Montgomery
    • 13
  • A. Nadolski
    • 19
  • T. Natoli
    • 23
  • H. Nguyen
    • 5
  • G. I. Noble
    • 13
  • V. Novosad
    • 14
  • S. Padin
    • 6
  • J. Pearson
    • 14
  • C. M. Posada
    • 14
  • A. Rahlin
    • 5
    • 6
  • J. E. Ruhl
    • 17
  • L. J. Saunders
    • 6
    • 9
  • J. T. Sayre
    • 16
  • I. Shirley
    • 8
  • E. Shirokoff
    • 6
    • 10
  • G. Smecher
    • 24
  • J. A. Sobrin
    • 6
    • 12
  • A. A. Stark
    • 25
  • K. T. Story
    • 2
    • 3
  • A. Suzuki
    • 8
    • 21
  • Q. Y. Tang
    • 6
    • 10
  • K. L. Thompson
    • 2
    • 3
    • 4
  • C. Tucker
    • 1
  • L. R. Vale
    • 7
  • K. Vanderlinde
    • 23
    • 26
  • J. D. Vieira
    • 19
    • 20
  • G. Wang
    • 9
  • N. Whitehorn
    • 8
    • 27
  • V. Yefremenko
    • 9
  • K. W. Yoon
    • 2
    • 3
    • 4
  • M. R. Young
    • 26
  1. 1.School of Physics and AstronomyCardiff UniversityCardiffUK
  2. 2.Kavli Institute for Particle Astrophysics and CosmologyStanford UniversityStanfordUSA
  3. 3.Department of PhysicsStanford UniversityStanfordUSA
  4. 4.SLAC National Accelerator LaboratoryMenlo ParkUSA
  5. 5.Fermi National Accelerator Laboratory, MS209BataviaUSA
  6. 6.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoUSA
  7. 7.National Institute of Standards and TechnologyBoulderUSA
  8. 8.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  9. 9.High-Energy Physics DivisionArgonne National LaboratoryArgonneUSA
  10. 10.Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoUSA
  11. 11.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA
  12. 12.Department of PhysicsUniversity of ChicagoChicagoUSA
  13. 13.Department of PhysicsMcGill UniversityMontrealCanada
  14. 14.Material Science DivisionArgonne National LaboratoryArgonneUSA
  15. 15.CIFAR Program in Cosmology and GravityCanadian Institute for Advanced ResearchTorontoCanada
  16. 16.CASA, Department of Astrophysical and Planetary SciencesUniversity of ColoradoBoulderUSA
  17. 17.Physics DepartmentCase Western Reserve UniversityClevelandUSA
  18. 18.Department of PhysicsUniversity of ColoradoBoulderUSA
  19. 19.Astronomy DepartmentUniversity of IllinoisUrbanaUSA
  20. 20.Department of PhysicsUniversity of IllinoisUrbanaUSA
  21. 21.Physics DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  22. 22.University of ChicagoChicagoUSA
  23. 23.Dunlap Institute for Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  24. 24.Three-Speed Logic, Inc.VancouverCanada
  25. 25.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  26. 26.Department of Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  27. 27.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations