Journal of Low Temperature Physics

, Volume 193, Issue 5–6, pp 1251–1256 | Cite as

MetroBeta: Beta Spectrometry with Metallic Magnetic Calorimeters in the Framework of the European Program of Ionizing Radiation Metrology

  • M. LoidlEmail author
  • J. Beyer
  • L. Bockhorn
  • C. Enss
  • D. Györi
  • S. Kempf
  • K. Kossert
  • R. Mariam
  • O. Nähle
  • M. Paulsen
  • M. Rodrigues
  • M. Schmidt


MetroBeta is a European project aiming at the improvement of the knowledge of the shapes of beta spectra, both in terms of theoretical calculations and measurements. It is part of a common European program of ionizing radiation metrology. Metallic magnetic calorimeters (MMCs) with the beta emitter embedded in the absorber have in the past proven to be among the best beta spectrometers, in particular for low-energy beta transitions. Within this project, new designs of MMCs optimized for five different beta energy ranges were developed. A new detector module with thermal decoupling of MMC and SQUID chips was designed. An important aspect of the research and development concerns the source/absorber preparation techniques. Four beta spectra with maximum energies ranging from 76 to 709 keV will be measured. Improved theoretical calculation methods and complementary measurement techniques complete the project.


Beta spectrometry Metallic magnetic calorimeter Ionizing radiation metrology 



This work was performed as part of the EMPIR Project 15SIB10 MetroBeta. The project has received funding from the EMPIR program co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation program.


  1. 1.
    H. Rotzinger, M. Linck, A. Burck, M. Rodrigues, M. Loidl, E. Leblanc, L. Gastaldo, A. Fleischmann, C. Enss, J. Low Temp. Phys. 151, 1087 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    M. Loidl, M. Rodrigues, B. Censier, S. Kowalski, X. Mougeot, P. Cassette, T. Branger, D. Lacour, Appl. Radiat. Isot. 68, 1454 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot, J. Low Temp. Phys. 176, 1040 (2014)ADSCrossRefGoogle Scholar
  4. 4.
  5. 5.
    F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE—a Code System for Monte Carlo Simulation of Electron and Photon Transport. Rapport NEA/NSC/DOC (2001), p. 19Google Scholar
  6. 6.
    A. Fleischmann, C. Enss, G. M. Seidel, in Cryogenic Particle Detection, ed. by C. Enss. Topics in Applied Physics, vol 99 (Springer, Berlin/Heidelberg, 2005), pp. 151–216Google Scholar
  7. 7.
    C. Le-Bret, M. Loidl, M. Rodrigues, X. Mougeot, J. Bouchard, J. Low Temp. Phys. 167, 985 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Hoover, E.M. Bond, M.P. Croce, T.G. Holesinger, G.J. Kunde, M.W. Rabin, L.E. Wolfsberg, D.A. Bennett, J.P. Hays-Wehle, D.R. Schmidt, D. Swetz, J.N. Ullom, Anal. Chem. 87, 3996 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Sun, T.J. Balk, Scr. Mater. 58, 727 (2008)CrossRefGoogle Scholar
  10. 10.
    X. Mougeot, Phys. Rev. C 91, 055504 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    X. Mougeot, EPJ Web Conf. 146, 12015 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB)CEA-SaclayGif sur Yvette CedexFrance
  2. 2.Physikalisch-Technische Bundesanstalt (PTB)BerlinGermany
  3. 3.Physikalisch-Technische Bundesanstalt (PTB)BrunswickGermany
  4. 4.Kirchhoff-Institute for PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations