Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 288–297 | Cite as

Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys

  • E. M. Vavagiakis
  • S. W. Henderson
  • K. Zheng
  • H.-M. Cho
  • N. F. Cothard
  • B. Dober
  • S. M. Duff
  • P. A. Gallardo
  • G. Hilton
  • J. Hubmayr
  • K. D. Irwin
  • B. J. Koopman
  • D. Li
  • F. Nati
  • M. D. Niemack
  • C. D. Reintsema
  • S. Simon
  • J. R. Stevens
  • A. Suzuki
  • B. Westbrook
Article
  • 33 Downloads

Abstract

In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (\(\mu \)MUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.

Keywords

Superconducting detectors Transition edge sensors Bolometers SQUIDs Weak link Proximity effect Magnetic field dependence 

Notes

Acknowledgements

The authors thank Christine Pappas for useful discussions of weak-link-like behavior in AlMn TESes, Zeqi Gu for assistance in measuring magnetic shielding values, and Suzanne Staggs, Edward Wollack, and Kevin Crowley for their helpful comments and feedback which have improved this work. The authors also thank the Atacama Cosmology Telescope, Simons Array, and Simons Observatory collaborations for their contributions, including the development of the detectors tested in this paper. This work was supported by NSF Grant AST-1454881. EMV was supported by the NSF GRFP under Grant No. DGE-1650441.

References

  1. 1.
  2. 2.
  3. 3.
    J.W. Fowler et al., Appl. Opt. 46, 3444 (2007).  https://doi.org/10.1364/AO.46.003444 ADSCrossRefGoogle Scholar
  4. 4.
    K Harrington et al., Proc. SPIE Int. Soc. Opt. Eng. 9914, 99141K (2016).  https://doi.org/10.1117/12.2233125
  5. 5.
    K. Arnold et al., Proc. SPIE 8452, 84521D (2012).  https://doi.org/10.1117/12.927057 CrossRefGoogle Scholar
  6. 6.
    K.N. Abazajian et al., ArXiv e-prints 1610, 02743 (2016)Google Scholar
  7. 7.
    S.W. Deiker et al., Appl. Phys. Lett. 85(11), 2137 (2004).  https://doi.org/10.1063/1.1789575 ADSCrossRefGoogle Scholar
  8. 8.
    S.W. Henderson et al., J. Low Temp. Phys. 184(3–4), 772 (2015).  https://doi.org/10.1007/s10909-016-1575-z ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Duff et al., J Low Temp Phys 184(3), 634 (2016).  https://doi.org/10.1007/s10909-016-1576-y ADSCrossRefGoogle Scholar
  10. 10.
    M.H. Abitbol et al., ArXiv e-prints 1706, 02464 (2017)Google Scholar
  11. 11.
    T.M. Lanting et al., Appl. Phys. Lett. 86, 112511 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92, 023514 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    R.J. Thornton et al., Proc. SPIE 7020, 7020 (2008).  https://doi.org/10.1117/12.790078 CrossRefGoogle Scholar
  15. 15.
    J.T. Ward et al., Proc. SPIE 9914, 991437 (2016).  https://doi.org/10.1117/12.2233746 CrossRefGoogle Scholar
  16. 16.
    E.E. Quealy, Ph.D. thesis, University of California, Berkeley (2012)Google Scholar
  17. 17.
    E. Grace et al., J. Low Temp. Phys. 176(5–6), 705 (2014).  https://doi.org/10.1007/s10909-014-1125-5 ADSCrossRefGoogle Scholar
  18. 18.
    A. Suzuki et al., J. Low Temp. Phys. 184, 805 (2016).  https://doi.org/10.1007/s10909-015-1425-4 ADSCrossRefGoogle Scholar
  19. 19.
    D. Li et al., J. Low Temp. Phys. 184, 66 (2016).  https://doi.org/10.1007/s10909-016-1526-8 ADSCrossRefGoogle Scholar
  20. 20.
    D.R. Schmidt et al., IEEE Trans. Appl. Supercond. 21(3), 196 (2011).  https://doi.org/10.1109/TASC.2010.2090313 ADSCrossRefGoogle Scholar
  21. 21.
    J.E. Sadleir et al., Phys. Rev. Lett. 104(4), 047003 (2010). https://doi.org/10.1103/PhysRevLett. 104.047003Google Scholar
  22. 22.
    Sadleir, J.E., Superconducting transition-edge sensor physics, Ph.D. Thesis, University of Illinois (2010)Google Scholar
  23. 23.
    S.J. Smith et al., J. Appl. Phys. 114(7), 074513–074513-24 (2013).  https://doi.org/10.1063/1.4818917 ADSCrossRefGoogle Scholar
  24. 24.
    J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28(8), 084003 (2015).  https://doi.org/10.1088/0953-2048/28/8/084003 ADSCrossRefGoogle Scholar
  25. 25.
    S.W. Henderson et al., Proc. SPIE 9914, 99141G (2016).  https://doi.org/10.1117/12.2233895 CrossRefGoogle Scholar
  26. 26.
    M.D. Niemack, Towards Dark Energy: Design, Development, and Preliminary Data from ACT, Ph.D. Thesis, Princeton University (2008)Google Scholar
  27. 27.
    S.-P.P. Ho et al., Proc. SPIE 9914, 9914 (2017).  https://doi.org/10.1117/12.2233113 CrossRefGoogle Scholar
  28. 28.
    E.A. Grace, Ph.D. thesis, Princeton University (2016)Google Scholar
  29. 29.
    A. Suzuki, Ph.D. thesis, University of California, Berkeley (2013)Google Scholar
  30. 30.
    B.K. et al., J. Low Temp. Phys. This Special Issue LTD17 (2018).  https://doi.org/10.1007/s10909-018-1957-5
  31. 31.
    M.D. Audley et al., Proc. SPIE 5498, 63 (2004).  https://doi.org/10.1117/12.551259 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. M. Vavagiakis
    • 1
  • S. W. Henderson
    • 1
  • K. Zheng
    • 1
  • H.-M. Cho
    • 2
  • N. F. Cothard
    • 1
  • B. Dober
    • 3
  • S. M. Duff
    • 4
  • P. A. Gallardo
    • 1
  • G. Hilton
    • 4
  • J. Hubmayr
    • 4
  • K. D. Irwin
    • 2
    • 5
  • B. J. Koopman
    • 1
  • D. Li
    • 2
  • F. Nati
    • 6
  • M. D. Niemack
    • 1
  • C. D. Reintsema
    • 3
  • S. Simon
    • 7
  • J. R. Stevens
    • 1
  • A. Suzuki
    • 8
  • B. Westbrook
    • 9
  1. 1.Department of PhysicsCornell UniversityIthacaUSA
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.NIST Quantum Devices GroupBoulderUSA
  4. 4.National Institute of Standards and TechnologyBoulderUSA
  5. 5.Department of PhysicsStanford UniversityStanfordUSA
  6. 6.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Department of PhysicsUniversity of MichiganAnn ArborUSA
  8. 8.Lawrence Berkeley National LaboratoryBerkeleyUSA
  9. 9.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations