Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 258–266 | Cite as

Toward Large Field-of-View High-Resolution X-ray Imaging Spectrometers: Microwave Multiplexed Readout of 28 TES Microcalorimeters

  • W. Yoon
  • J. S. Adams
  • S. R. Bandler
  • D. Becker
  • D. A. Bennett
  • J. A. Chervenak
  • A. M. Datesman
  • M. E. Eckart
  • F. M. Finkbeiner
  • J. W. Fowler
  • J. D. Gard
  • G. C. Hilton
  • R. L. Kelley
  • C. A. Kilbourne
  • J. A. B. Mates
  • A. R. Miniussi
  • S. H. Moseley
  • O. Noroozian
  • F. S. Porter
  • C. D. Reintsema
  • J. E. Sadleir
  • K. Sakai
  • S. J. Smith
  • T. R. Stevenson
  • D. S. Swetz
  • J. N. Ullom
  • L. R. Vale
  • N. A. Wakeham
  • E. J. Wassell
  • E. J. Wollack
Article

Abstract

We performed small-scale demonstrations at GSFC of high-resolution X-ray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space-based X-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 55 mK stage of our laboratory ADR. Using a ROACH2 FPGA at room temperature, we read out pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to rf-SQUIDs. The resonators are spaced 6 MHz apart (at \(\sim \) 5.9 GHz) and have quality factors of \(\sim \) 15,000. In our initial demonstration, we used flux-ramp modulation frequencies of 125 kHz to read out 5 pixels simultaneously and achieved spectral resolutions of 2.8–3.1 eV FWHM at 5.9 keV. Our subsequent work is ongoing: to-date we have achieved a median spectral resolution of 3.4 eV FWHM at 5.9 keV while reading out 28 pixels simultaneously with flux-ramp frequencies of 160 kHz. We present the measured system-level noise and maximum slew rates and briefly describe our future development work.

Keywords

Microwave multiplexing Flux ramp Transition-edge sensor X-ray spectrometer Microcalorimeter 

References

  1. 1.
    J.A. Gaskin et al., Proc. SPIE 10397, 103970S (2017).  https://doi.org/10.1117/12.2273911 CrossRefGoogle Scholar
  2. 2.
    S.J. Smith, S.R. Bandler, R.P. Brekosky, A.-D. Brown, J.A. Chervenak, M.E. Eckart, E.F.-Feliciano, F.M. Finkbeiner, R.L. Kelley, C. A. Kilbourne, F.S. Porter, J.E. Sadleir, IEEE Trans. Appl. Supercond. 19 (2009).  https://doi.org/10.1109/TASC.2009.2019557 ADSCrossRefGoogle Scholar
  3. 3.
    J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92 (2008).  https://doi.org/10.1063/1.2803852 ADSCrossRefGoogle Scholar
  4. 4.
    J.A.B. Mates, D.T. Becker, D.A. Bennett, B.J. Dober, J.D. Gard, J.P. Hays-Wehle, J.W. Fowler, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 111 (2017).  https://doi.org/10.1063/1.4986222 ADSCrossRefGoogle Scholar
  5. 5.
    C.D. Reintsema, J. Beall, W. Doriese, W. Duncan, L. Ferreira, G.C. Hilton, K.D. Irwin, D. Schmidt, J. Ullom, L. Vale, Y. Xu, J. Low Temp. Phys. 151, 927–933 (2007).  https://doi.org/10.1007/s10909-008-9769-7 ADSCrossRefGoogle Scholar
  6. 6.
    K.M. Morgan, B.K. Alpert, D.A. Bennett, E.V. Denison, W.B. Doriese, J.W. Fowler, J.D. Gard, G.C. Hilton, K.D. Irwin, Y.I. Joe, G.C. O’Neil, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, D.S. Swetz, Appl. Phys. Lett. 109 (2016).  https://doi.org/10.1063/1.4962636 ADSCrossRefGoogle Scholar
  7. 7.
    A. Fleischmann, C. Enss, G.M. Seidel, Metallic magnetic calorimeters, in cryogenic particle detection, Topics in Applied Physics, ed. by C. Enss, vol. 99, pp. 151–216 (2005)Google Scholar
  8. 8.
    J.A.B. Mates, K.D. Irwin, L.R. Vale, G.C. Hilton, J. Gao, K.W. Lehnert, J. Low Temp. Phys. 167 (2012).  https://doi.org/10.1007/s10909-012-0518-6 ADSCrossRefGoogle Scholar
  9. 9.
    O. Noroozian, J.A.B. Mates, D.A. Bennett, J.A. Brevik, J.W. Fowler, J. Gao, G.C. Hilton, R.D. Horansky, K.D. Irwin, Z. Kang, D.R. Schmidt, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 103 (2013).  https://doi.org/10.1063/1.4829156 ADSCrossRefGoogle Scholar
  10. 10.
    C.A. Kilbourne, W.B. Doriese, S.R. Bandler, R.P. Brekosky, A.-D. Brown, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, G.C. Hilton, K.D. Irwin, N. Iyomoto, R.L. Kelley, F.S. Porter, C.D. Reintsema, S.J. Smith, J.N. Ullom, Proc. SPIE 7011, 701104–701107 (2008)CrossRefGoogle Scholar
  11. 11.
    E.J. Wassell et al., IEEE Trans. Appl. Supercond. 27(4) (2017).  https://doi.org/10.1109/TASC.2016.2633783 CrossRefGoogle Scholar
  12. 12.
    S.J. Smith, J.S. Adams, C.N. Bailey, S.R. Bandler, S.E. Busch, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, C.A. Kilbourne, R.L. Kelley, S.-J. Lee, J.-P. Porst, F.S. Porter, J.E. Sadleir, J. Appl. Phys. 114 (2013).  https://doi.org/10.1063/1.4818917 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • W. Yoon
    • 1
    • 2
  • J. S. Adams
    • 1
    • 3
  • S. R. Bandler
    • 1
  • D. Becker
    • 4
  • D. A. Bennett
    • 4
  • J. A. Chervenak
    • 1
  • A. M. Datesman
    • 1
    • 5
  • M. E. Eckart
    • 1
  • F. M. Finkbeiner
    • 1
    • 6
  • J. W. Fowler
    • 4
  • J. D. Gard
    • 4
  • G. C. Hilton
    • 4
  • R. L. Kelley
    • 1
  • C. A. Kilbourne
    • 1
  • J. A. B. Mates
    • 4
  • A. R. Miniussi
    • 1
    • 3
  • S. H. Moseley
    • 1
  • O. Noroozian
    • 1
    • 7
    • 8
  • F. S. Porter
    • 1
  • C. D. Reintsema
    • 4
  • J. E. Sadleir
    • 1
  • K. Sakai
    • 1
    • 3
  • S. J. Smith
    • 1
    • 3
  • T. R. Stevenson
    • 1
  • D. S. Swetz
    • 4
  • J. N. Ullom
    • 4
  • L. R. Vale
    • 4
  • N. A. Wakeham
    • 1
    • 2
  • E. J. Wassell
    • 1
    • 5
  • E. J. Wollack
    • 1
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.NASA Postdoctoral ProgramUniversities Space Research AssociationGreenbeltUSA
  3. 3.University of MarylandBaltimore CountyUSA
  4. 4.National Institute of Standards and TechnologyBoulderUSA
  5. 5.SGT Inc.GreenbeltUSA
  6. 6.Wyle Information SystemMcLeanUSA
  7. 7.National Radio Astronomy ObservatoryCharlottesvilleUSA
  8. 8.University of VirginiaCharlottesvilleUSA

Personalised recommendations