Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 5–6, pp 675–680 | Cite as

Fabrication of Ultrasensitive TES Bolometric Detectors for HIRMES

  • Ari-David Brown
  • Regis Brekosky
  • David Franz
  • Wen-Ting Hsieh
  • Alexander Kutyrev
  • Vilem Mikula
  • Timothy Miller
  • S. Harvey Moseley
  • Joseph Oxborrow
  • Karwan Rostem
  • Edward Wollack
Article
  • 56 Downloads

Abstract

The high-resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R ~ 100,000) instrument operating in the 25–122 μm spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy in 2019. Central to HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8 × 16 detector high-resolution array and a 64 × 16 detector low-resolution array. Both types of detectors consist of Mo/Au TES fabricated on leg-isolated Si membranes. Whereas the high-resolution detectors, with a noise equivalent power (NEP) ~ 1.5 × 10−18 W/rt (Hz), are fabricated on 0.45 μm Si substrates, the low-resolution detectors, with NEP ~ 1.0 × 10−17 W/rt (Hz), are fabricated on 1.40 μm Si. Here, we discuss the similarities and differences in the fabrication methodologies used to realize the two types of detectors.

Keywords

Transition edge sensor HIRMES Bolometer 

Notes

Acknowledgements

This work was supported by a SOFIA Third Generation Instrument Award. The authors gratefully acknowledge suggestions from Kevin Denis, and support from James Chervenak for cryogenic testing of the Mo/Au bilayers.

Funding

Funding was provided by National Aeronautics and Space Administration (Grant No. NNH15ZCA001N-S3GSI).

References

  1. 1.
    E.M. Barrentine et al., J. Low Temp. Phys., this Special Issue LTD17 (2018)Google Scholar
  2. 2.
    C. Allen, D.J. Benford, T.M. Miller, S.H. Moseley, J.G. Staguhn, E.J. Wollack, J. Low Temp. Phys. 151, 266–270 (2008).  https://doi.org/10.1007/s10909-007-9646-9 ADSCrossRefGoogle Scholar
  3. 3.
    C.A. Jhabvala et al., SPIE Proc. 9153, 9153C1–C12 (2014).  https://doi.org/10.1117/12.2056995 CrossRefGoogle Scholar
  4. 4.
    K.L. Denis et al., J. Low Temp. Phys. 184, 668–673 (2016).  https://doi.org/10.1007/s10909-015-1366-y ADSCrossRefGoogle Scholar
  5. 5.
    D. Benford et al., SPIE Proc. 5498, 208–219 (2004).  https://doi.org/10.1117/12.552094 ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Martinis, G.C. Hilton, K.D. Irwin, D.A. Wollman, Nucl. Instr. Methods Phys. Res. A 444, 23–27 (2000).  https://doi.org/10.1016/S0168-9002(99)01320-0 ADSCrossRefGoogle Scholar
  7. 7.
    A. Patel et al., IEEE Trans. Appl. Supercond. 23, 2400404 (2013).  https://doi.org/10.1109/TASC.2013.2240152 ADSCrossRefGoogle Scholar
  8. 8.
    A.W. Porter, Nature 130, 929–930 (1932)ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • Ari-David Brown
    • 1
  • Regis Brekosky
    • 1
    • 2
  • David Franz
    • 1
  • Wen-Ting Hsieh
    • 1
  • Alexander Kutyrev
    • 1
    • 3
  • Vilem Mikula
    • 1
    • 4
  • Timothy Miller
    • 1
  • S. Harvey Moseley
    • 1
  • Joseph Oxborrow
    • 1
    • 5
  • Karwan Rostem
    • 1
    • 6
  • Edward Wollack
    • 1
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Stinger Ghaffarian TechnologiesSeabrookUSA
  3. 3.Department of AstronomyUniversity of MarylandCollege ParkUSA
  4. 4.Institute for Astrophysics and Computational ScienceCatholic University of AmericaWashingtonUSA
  5. 5.Scientific and Biomedical MicrosystemsGlen BurnieUSA
  6. 6.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations