Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 5–6, pp 695–702 | Cite as

Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti–Au–Ti–Au Thin-Film Stack

  • F. W. Carter
  • P. A. R. Ade
  • Z. Ahmed
  • A. J. Anderson
  • J. E. Austermann
  • J. S. Avva
  • R. Basu Thakur
  • A. N. Bender
  • B. A. Benson
  • J. E. Carlstrom
  • T. Cecil
  • C. L. Chang
  • J. F. Cliche
  • A. Cukierman
  • E. V. Denison
  • T. de Haan
  • J. Ding
  • R. Divan
  • M. A. Dobbs
  • D. Dutcher
  • W. Everett
  • A. Foster
  • R. N. Gannon
  • A. Gilbert
  • J. C. Groh
  • N. W. Halverson
  • A. H. Harke-Hosemann
  • N. L. Harrington
  • J. W. Henning
  • G. C. Hilton
  • W. L. Holzapfel
  • N. Huang
  • K. D. Irwin
  • O. B. Jeong
  • M. Jonas
  • T. Khaire
  • A. M. Kofman
  • M. Korman
  • D. Kubik
  • S. Kuhlmann
  • C. L. Kuo
  • V. Kutepova
  • A. T. Lee
  • A. E. Lowitz
  • S. S. Meyer
  • D. Michalik
  • C. S. Miller
  • J. Montgomery
  • A. Nadolski
  • T. Natoli
  • H. Nguyen
  • G. I. Noble
  • V. Novosad
  • S. Padin
  • Z. Pan
  • J. Pearson
  • C. M. Posada
  • A. Rahlin
  • J. E. Ruhl
  • L. J. Saunders
  • J. T. Sayre
  • I. Shirley
  • E. Shirokoff
  • G. Smecher
  • J. A. Sobrin
  • L. Stan
  • A. A. Stark
  • K. T. Story
  • A. Suzuki
  • Q. Y. Tang
  • K. L. Thompson
  • C. Tucker
  • L. R. Vale
  • K. Vanderlinde
  • J. D. Vieira
  • G. Wang
  • N. Whitehorn
  • V. Yefremenko
  • K. W. Yoon
  • M. R. Young
Article

Abstract

We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope’s third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.

Keywords

SPT-3G Transition-edge sensor Proximity effect 

Notes

Acknowledgements

The South Pole Telescope is supported by the National Science Foundation (NSF) through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, and the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. Work at Argonne National Laboratory, including Laboratory Directed Research and Development support and use of the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science (DOE-OS) user facility, was supported under Contract No. DE-AC02-06CH11357. Work at Fermi National Accelerator Laboratory, a DOE-OS, HEP User Facility managed by the Fermi Research Alliance, LLC, was supported under Contract No. DE-AC02-07CH11359. NWH acknowledges support from NSF CAREER grant AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program.

References

  1. 1.
    A.J. Anderson, P.A.R. Ade, Z. Ahmed, et al., J. Low Temp. Phys., this Special Issue LTD17, Abstract number O-69 (2018)Google Scholar
  2. 2.
    J. Ding, P.A.R. Ade, A.J. Anderson et al., IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).  https://doi.org/10.1109/TASC.2016.2639378 CrossRefGoogle Scholar
  3. 3.
    C.M. Posada, P.A.R. Ade, Z. Ahmed, et al., J. Low Temp. Phys., this Special Issue LTD17, Abstract number PC-23 (2018)Google Scholar
  4. 4.
    K.D. Irwin, G.C. Hilton, C.E. (ed.), Transition-Edge Sensors - a chapter in Cryogenic Particle Detection, vol. 99 (2005).  https://doi.org/10.1007/10933596_3
  5. 5.
    M.A. Dobbs, M. Lueker, K.A. Aird et al., Rev. Sci. Instrum. 83(7), 1 (2012).  https://doi.org/10.1063/1.4737629 CrossRefGoogle Scholar
  6. 6.
    A.N. Bender, P.A.R. Ade, A.J. Anderson et al., SPIE 9914. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII vol. 9914, pp. 99141D (2016).  https://doi.org/10.1117/12.2232146
  7. 7.
    Y.V. Fominov, M.V. Feigel’man, Phys. Rev. B 63(February), 094518 (2001).  https://doi.org/10.1103/PhysRevB.63.094518 ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • F. W. Carter
    • 1
    • 2
  • P. A. R. Ade
    • 3
  • Z. Ahmed
    • 4
    • 5
    • 6
  • A. J. Anderson
    • 2
    • 7
  • J. E. Austermann
    • 8
  • J. S. Avva
    • 9
  • R. Basu Thakur
    • 2
  • A. N. Bender
    • 1
    • 2
  • B. A. Benson
    • 2
    • 7
    • 10
  • J. E. Carlstrom
    • 1
    • 2
    • 10
    • 11
    • 12
  • T. Cecil
    • 1
  • C. L. Chang
    • 1
    • 2
    • 10
  • J. F. Cliche
    • 13
  • A. Cukierman
    • 9
  • E. V. Denison
    • 8
  • T. de Haan
    • 9
  • J. Ding
    • 14
  • R. Divan
    • 15
  • M. A. Dobbs
    • 13
    • 16
  • D. Dutcher
    • 2
    • 12
  • W. Everett
    • 17
  • A. Foster
    • 18
  • R. N. Gannon
    • 14
  • A. Gilbert
    • 13
  • J. C. Groh
    • 9
  • N. W. Halverson
    • 17
    • 19
  • A. H. Harke-Hosemann
    • 1
    • 20
  • N. L. Harrington
    • 9
  • J. W. Henning
    • 2
  • G. C. Hilton
    • 8
  • W. L. Holzapfel
    • 9
  • N. Huang
    • 9
  • K. D. Irwin
    • 4
    • 5
    • 6
  • O. B. Jeong
    • 9
  • M. Jonas
    • 7
  • T. Khaire
    • 14
  • A. M. Kofman
    • 20
    • 21
  • M. Korman
    • 18
  • D. Kubik
    • 7
  • S. Kuhlmann
    • 1
  • C. L. Kuo
    • 4
    • 5
    • 6
  • V. Kutepova
    • 15
  • A. T. Lee
    • 9
    • 22
  • A. E. Lowitz
    • 2
  • S. S. Meyer
    • 2
    • 10
    • 11
    • 12
  • D. Michalik
    • 23
  • C. S. Miller
    • 15
  • J. Montgomery
    • 13
  • A. Nadolski
    • 20
  • T. Natoli
    • 24
  • H. Nguyen
    • 7
  • G. I. Noble
    • 13
  • V. Novosad
    • 14
  • S. Padin
    • 2
  • Z. Pan
    • 2
    • 12
  • J. Pearson
    • 14
  • C. M. Posada
    • 14
  • A. Rahlin
    • 2
    • 7
  • J. E. Ruhl
    • 18
  • L. J. Saunders
    • 1
    • 2
  • J. T. Sayre
    • 17
  • I. Shirley
    • 9
  • E. Shirokoff
    • 2
    • 10
  • G. Smecher
    • 25
  • J. A. Sobrin
    • 2
    • 12
  • L. Stan
    • 15
  • A. A. Stark
    • 26
  • K. T. Story
    • 4
    • 5
  • A. Suzuki
    • 9
    • 22
  • Q. Y. Tang
    • 2
    • 10
  • K. L. Thompson
    • 4
    • 5
    • 6
  • C. Tucker
    • 3
  • L. R. Vale
    • 8
  • K. Vanderlinde
    • 24
    • 27
  • J. D. Vieira
    • 20
    • 21
  • G. Wang
    • 1
  • N. Whitehorn
    • 9
    • 28
  • V. Yefremenko
    • 1
  • K. W. Yoon
    • 4
    • 5
    • 6
  • M. R. Young
    • 27
  1. 1.High-Energy Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoUSA
  3. 3.School of Physics and AstronomyCardiff UniversityCardiffUK
  4. 4.Kavli Institute for Particle Astrophysics and CosmologyStanford UniversityStanfordUSA
  5. 5.Department of PhysicsStanford UniversityStanfordUSA
  6. 6.SLAC National Accelerator LaboratoryMenlo ParkUSA
  7. 7.Fermi National Accelerator LaboratoryBataviaUSA
  8. 8.National Institute of Standards and TechnologyBoulderUSA
  9. 9.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  10. 10.Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoUSA
  11. 11.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA
  12. 12.Department of PhysicsUniversity of ChicagoChicagoUSA
  13. 13.Department of PhysicsMcGill UniversityMontrealCanada
  14. 14.Argonne National Laboratory, Material Science DivisionArgonneUSA
  15. 15.Argonne National Laboratory, Center for Nanoscale MaterialsArgonneUSA
  16. 16.Canadian Institute for Advanced Research, CIFAR Program in Cosmology and GravityTorontoCanada
  17. 17.CASA, Department of Astrophysical and Planetary SciencesUniv. of ColoradoBoulderUSA
  18. 18.Physics DepartmentCase Western Reserve Univ.ClevelandUSA
  19. 19.Department of PhysicsUniv. of ColoradoBoulderUSA
  20. 20.Astronomy DepartmentUniv. of IllinoisUrbanaUSA
  21. 21.Department of PhysicsUniv. of IllinoisUrbanaUSA
  22. 22.Physics DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  23. 23.Univ. of ChicagoChicagoUSA
  24. 24.Dunlap Institute for Astronomy and AstrophysicsUniv. of TorontoTorontoCanada
  25. 25.Three-Speed Logic, IncVancouverCanada
  26. 26.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  27. 27.Department of Astronomy and AstrophysicsUniv. of TorontoTorontoCanada
  28. 28.Department of Physics and AstronomyUniv. of CaliforniaLos AngelesUSA

Personalised recommendations