Advertisement

Journal of Low Temperature Physics

, Volume 191, Issue 5–6, pp 380–392 | Cite as

Formal Equivalence Between Partitioned and Partition-Free Quenches in Quantum Transport

  • Michael RidleyEmail author
  • Riku Tuovinen
Article

Abstract

In this paper, we review the partitioned and partition-free approaches to the calculation of the time-dependent response of a molecular junction to the switch-on of an arbitrary time-dependent bias. Using the nonequilibrium Green’s function formalism on different time contours, we derive a formal equivalence between these two approaches. This clarifies a recent result of Odashima and Lewenkopf (Phys Rev B 95:104301, 2017), which is valid for a static bias and single-level molecular structure, and extends it to arbitrary time-dependent biases and arbitrarily large molecular structures.

Notes

Acknowledgements

This work was financially supported by the Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, Tel Aviv University (M.R.) and by the DFG (Grant No. SE 2558/2-1) through the Emmy Noether program (R.T.).

References

  1. 1.
    I. Íñiguez-de-la Torre, T. González, D. Pardo, C. Gardès, Y. Roelens, S. Bollaert, A. Curutchet, C. Gaquiere, J. Mateos, Semicond. Sci. Technol. 25, 125013 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    T.A. Su, H. Li, M.L. Steigerwald, L. Venkataraman, C. Nuckolls, Nat. Chem. 7, 215 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng et al., Science 352, 1443 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    W. Zhang, P.H. Pham, E.R. Brown, P.J. Burke, Nanoscale 6, 13895 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    R. Landauer, Phil. Mag. 21, 863 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    C. Caroli, R. Combescot, P. Nozires, D. Saint-James, J. Phys. C 4, 916 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    C. Caroli, R. Combescot, D. Lederer, P. Nozires, D. Saint-James, J. Phys. C 4, 2598 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    M. Cini, Phys. Rev. B 22, 5887 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    G. Stefanucci, C.O. Almbladh, Phys. Rev. B 69, 195318 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    G. Stefanucci, C.O. Almbladh, EPL (Europhys. Lett.) 67, 14 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    G. Stefanucci, C.O. Almbladh, J. Phys. Conf. Ser. 35, 17 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Stefanucci, R. Van Leeuwen, Nonequilibrium Many-body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, 2013)CrossRefzbMATHGoogle Scholar
  16. 16.
    E. Perfetto, G. Stefanucci, M. Cini, Phys. Rev. B 78, 155301 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    R. Tuovinen, R. Van Leeuwen, E. Perfetto, G. Stefanucci, J. Phys. Conf. Ser. 427, 012014 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Tuovinen, E. Perfetto, G. Stefanucci, R. Van Leeuwen, Phys. Rev. B 89, 085131 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Ridley, A. MacKinnon, L. Kantorovich, Phys. Rev. B 91, 125433 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M. Ridley, R. Tuovinen, Phys. Rev. B 96, 195429 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M. Ridley, A. MacKinnon, L. Kantorovich, J. Phys. Conf. Ser. 696, 012017 (2016)CrossRefGoogle Scholar
  22. 22.
    R. Tuovinen, R. Van Leeuwen, E. Perfetto, G. Stefanucci, J. Phys. Conf. Ser. 696, 012016 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Ridley, A. MacKinnon, L. Kantorovich, Phys. Rev. B 93, 205408 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    M. Ridley, A. MacKinnon, L. Kantorovich, Phys. Rev. B 95, 165440 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    F.G. Eich, M. Di Ventra, G. Vignale, Phys. Rev. B 93, 134309 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    M.M. Odashima, C.H. Lewenkopf, Phys. Rev. B 95, 104301 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    K.S. Thygesen, A. Rubio, Phys. Rev. B 77, 115333 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    P. Myöhänen, A. Stan, G. Stefanucci, R. van Leeuwen, Phys. Rev. B 80, 115107 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    H. Ness, L.K. Dash, R.W. Godby, Phys. Rev. B 82, 085426 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    D. Karlsson, C. Verdozzi, Phys. Rev. B 90, 201109 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    N. Schlünzen, S. Hermanns, M. Bonitz, C. Verdozzi, Phys. Rev. B 93, 035107 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)Google Scholar
  33. 33.
    O.V. Konstantinov, V.I. Perel’, Sov. Phys. JETP 12, 142 (1961)Google Scholar
  34. 34.
    D.C. Langreth, in Linear and Nonlinear Electron Transport in Solids, ed. by J.T. Devreese (Springer, Berlin, 1976)Google Scholar
  35. 35.
    Y. Zhu, J. Maciejko, T. Ji, H. Guo, J. Wang, Phys. Rev. B 71, 075317 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    C.J.O. Verzijl, J.S. Seldenthuis, J.M. Thijssen, J. Chem. Phys. 138, 094102 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Raymond and Beverley Sackler Center for Computational Molecular and Materials ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.Max Planck Institute for the Structure and Dynamics of MatterCenter for Free Electron Laser ScienceHamburgGermany

Personalised recommendations