Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit–Cavity System

  • S. V. Remizov
  • A. A. Zhukov
  • D. S. Shapiro
  • W. V. Pogosov
  • Yu. E. Lozovik
Article
  • 34 Downloads

Abstract

We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit–cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

Keywords

Qubit Cavity Energy dissipation Parametric resonance Superconducting quantum circuits 

Notes

Acknowledgements

D. S. S. acknowledges support by the Fellowship of the President of Russian Federation for young scientists (Fellowship No. SP-2044.2016.5), the Russian Science Foundation (Contract No. 16-12-00095) and by a joint grant of Russian Science Foundation and Deutsche Forschungsgemeinschaft (Grant No. 16-42-01035). W. V. P. acknowledges support by Russian Foundation for Basic Research (Project No. 15-02-02128) and by Ministry of Education and Science of the Russian Federation (Grant No. 14.Y26.31.0007). Yu. E. L. acknowledges support from Russian Foundation for Basic Research (Project No. 17-02-01134).

References

  1. 1.
    Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    M.H. Devoret, S. Girvin, R.J. Schoelkopf, Ann. Phys. (Leipzig) 16, 767 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Schoelkopf, S.M. Girvin, Nature 451, 664 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M.P. Silveri, J.A. Tuorila, E.V. Thuneberg, G.S. Paraoanu, Rep. Prog. Phys. 80, 056002 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    H. Paik, A. Mezzacapo, M. Sandberg, D.T. McClure, B. Abdo, A.D. Corcoles, O. Dial, D.F. Bogorin, B.L.T. Plourde, M. Steffen, A.W. Cross, J.M. Gambetta, J.M. Chow, Phys. Rev. Lett. 117, 250502 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    B. Karimi, J.P. Pekola, M. Campisi, R. Fazio, Quantum Sci. Technol. 2, 044007 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    M.D. Reed, L. DiCarlo, B.R. Johnson, L. Sun, D.I. Schuster, L. Frunzio, R.J. Schoelkopf, Phys. Rev. Lett. 105, 173601 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    I. Pietikäinen, S. Danilin, K.S. Kumar, A. Vepsäläinen, D.S. Golubev, J. Tuorila, G.S. Paraoanu, Phys. Rev. B 96, 020501 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Fink, A. Dombi, A. Vukics, A. Wallraff, P. Domokos, Phys. Rev. X 7, 011012 (2017)Google Scholar
  10. 10.
    P. Lähteenmäki, G.S. Paraoanu, J. Hassel, P.J. Hakonen, Proc. Natl. Acad. Sci. U.S.A. 110, 4234 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Nature 479, 376 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Rev. Mod. Phys. 84, 1 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Shapiro, A.A. Zhukov, W.V. Pogosov, YuE Lozovik, Phys. Rev. A 91, 063814 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, P. Karalekas, R. Manenti, M. Reagor, M. P. da Silva, R. Sinclair, E. Acala, N. Alidoust, J. Angeles, A. Bestwick, M. Block, B. Bloom, A. Bradley, C. Bui, L. Capelluto, R. Chilcott, J. Cordova, G. Crossman, M. Curtis, S. Deshpande, T. El Bouayadi, D. Girshovich, S. Hong, K. Kuang, M. Lenihan, T. Manning, J. Marshall, Y. Mohan, W. O’Brien, C. Osborn, J. Otterbach, A. Papageorge, J.-P. Paquette, M. Pelstring, A. Polloreno, G. Prawiroatmodjo, V. Rawat, R. Renzas, N. Rubin, D. Russell, M. Rust, D. Scarabelli, M. Scheer, M. Selvanayagam, R. Smith, A. Staley, M. Suska, N. Tezak, T.-W. To, M. Vahidpour, N. Vodrahalli, T. Whyland, K. Yadav, W. Zeng, C. Rigetti, arXiv:1706.06562 (2017)
  15. 15.
    A.J. Kerman, W.D. Oliver, Phys. Rev. Lett. 101, 070501 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    J.D. Strand, M. Ware, F. Beaudoin, T.A. Ohki, B.R. Johnson, A. Blais, B.L.T. Plourde, Phys. Rev. B 87, 220505 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    B. Royer, A.L. Grimsmo, N. Didier, A. Blais, Quantum 1, 11 (2017)CrossRefGoogle Scholar
  18. 18.
    T. Roy, S. Kundu, M. Chand, S. Hazra, N. Nehra, R. Cosmic, A. Ranadive, M.P. Patankar, K. Damle, R. Vijay, Phys. Rev. Appl. 7, 054025 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    D.C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J.M. Chow, J.M. Gambetta, Phys. Rev. Appl. 6, 064007 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Zhukov, D.S. Shapiro, W.V. Pogosov, YuE Lozovik, Phys. Rev. A 93, 063814 (2016)CrossRefGoogle Scholar
  21. 21.
    N.B. Narozhny, A.M. Fedotov, YuE Lozovik, Phys. Rev. A 64, 053807 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    S.J. Srinivasan, A.J. Hoffman, J.M. Gambetta, A.A. Houck, Phys. Rev. Lett. 106, 083601 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    A.J. Hoffman, S.J. Srinivasan, J.M. Gambetta, A.A. Houck, Phys. Rev. B 84, 184515 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    S. Zeytinoğlu, M. Pechal, S. Berger, A.A. Abdumalikov Jr., A. Wallraff, S. Filipp, Phys. Rev. A 91, 043846 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A.A. Zhukov, D.S. Shapiro, S.V. Remizov, W.V. Pogosov, YuE Lozovik, Phys. Lett. A 381, 592 (2017)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    X. Wang, A. Miranowicz, H.-R. Li, F. Nori, arXiv:1709.05199 (2017)
  27. 27.
    D.S. Veloso, A.V. Dodonov, J. Phys. B At. Mol. Opt. Phys. 48, 165503 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    V.V. Dodonov, Phys. Rev. A 58, 4147 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    M. Cirio, K. Debnath, N. Lambert, F. Nori, Phys. Rev. Lett. 119, 053601 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    S. De Liberato, D. Gerace, I. Carusotto, C. Ciuti, Phys. Rev. A 80, 053810 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dukhov Research Institute of Automatics (VNIIA)MoscowRussia
  2. 2.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.National Research Nuclear University (MEPhI)MoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  5. 5.National University of Science and Technology MISISMoscowRussia
  6. 6.L.D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  7. 7.Institute for Theoretical and Applied ElectrodynamicsRussian Academy of SciencesMoscowRussia
  8. 8.Institute of SpectroscopyRussian Academy of SciencesTroitskRussia

Personalised recommendations