Advertisement

Journal of Low Temperature Physics

, Volume 193, Issue 3–4, pp 512–517 | Cite as

Investigation of SIS Up-Converters for Use in Multi-pixel Receivers

  • Yoshinori Uzawa
  • Takafumi Kojima
  • Wenlei Shan
  • Alvaro Gonzalez
  • Matthias Kroug
Article

Abstract

We propose the use of SIS junctions as a frequency up-converter based on quasiparticle mixing in frequency division multiplexing circuits for multi-pixel heterodyne receivers. Our theoretical calculation showed that SIS junctions have the potential to achieve positive gain and low-noise characteristics in the frequency up-conversion process at local oscillator (LO) frequencies larger than the voltage scale of the dc nonlinearity of the SIS junction. We experimentally observed up-conversion gain in a mixer with four-series Nb-based SIS junctions at the LO frequency of 105 GHz for the first time.

Keywords

SIS junction Up-conversion Positive gain Multi-pixel heterodyne receivers Frequency division multiplexing 

Notes

Acknowledgements

We thank G. de Lange of SRON and E. Tong of Harvard Smithsonian Center for Astrophysics for fruitful discussions on the FDM scheme and the up-converter simulation, respectively. We also would like to thank T. Takahashi and K. Kaneko of NAOJ for technical assistance with the experiments.

References

  1. 1.
    C. Groppi et al., Proc. SPIE 7741, 77410X (2010).  https://doi.org/10.1117/12.857504 CrossRefGoogle Scholar
  2. 2.
    J. Kloosterman, Ph.D. thesis, University of Arizona (2014)Google Scholar
  3. 3.
    T.-M. Shen et al., Appl. Phys. Lett. 36, 777 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    G. de Lange, J. Low Temp. Phys. 176, 408 (2014).  https://doi.org/10.1007/s10909-013-1046-8 ADSCrossRefGoogle Scholar
  5. 5.
    H. Rashid et al., IEEE Microw. Wirel. Compon. Lett. 26, 831 (2016).  https://doi.org/10.1109/LMWC.2016.2605453 CrossRefGoogle Scholar
  6. 6.
    J.R. Tucker, IEEE J. Quantum Electron. 15, 1234 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    J.E. Fernandez, TMO Progress Rep. 42-133 July–Sept. 1998 (1998)Google Scholar
  8. 8.
    J.L. Cano et al., IEEE Trans. Mirow. Theory Techn. 58, 2504 (2015).  https://doi.org/10.1109/TMTT.2010.2058276 ADSCrossRefGoogle Scholar
  9. 9.
    T. Minamidani et al., Proc. SPIE 9914, 99141Z (2016).  https://doi.org/10.1117/12.2232137 CrossRefGoogle Scholar
  10. 10.
    S. Asayama et al., Int. J. IR MM Waves 25, 107 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    S. Asayama et al., Int. J. IR MM Waves 24, 1091 (2003)CrossRefGoogle Scholar
  12. 12.
    California Institute of Technology, Microwave research group. http://www.caltechmicrowave.org/amplifiers. Accessed 31 August 2017
  13. 13.
    T. Kojima et al., AIP Adv. 8, 025206 (2018).  https://doi.org/10.1063/1.5013268 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Information and Communications TechnologyTokyoJapan
  2. 2.National Astronomical Observatory of JapanTokyoJapan

Personalised recommendations