Journal of Low Temperature Physics

, Volume 191, Issue 5–6, pp 344–353 | Cite as

Magnetometry with Low-Resistance Proximity Josephson Junction

  • R. N. JabdaraghiEmail author
  • J. T. Peltonen
  • D. S. Golubev
  • J. P. Pekola


We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) and its key constituent formed by a Nb–Cu–Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, relying on Ar ion cleaning of the Nb contact surfaces. The quality of the Nb–Cu interface is characterized by measuring the temperature-dependent equilibrium critical supercurrent of the SNS junction. In the Nb-SQUIPT device, we observe a maximum flux-to-current transfer function value of about \(55\;\mathrm {nA}/\mathrm {\Phi }_0\) in the sub-gap regime of bias voltages. This results in suppression of power dissipation down to a few fW. Low-bias operation of the device with a relatively low probe junction resistance decreases the dissipation by up to two orders of magnitude compared to a conventional device based on an Al–Cu–Al SNS junction and an Al tunnel probe (Al-SQUIPT).


Proximity effect SQUIPT SNS junction Nb-SQUIPT 



The work has been supported by the Academy of Finland (Project Nos. 284594, 275167, and 312057). We acknowledge Micronova Nanofabrication Centre of OtaNano research infrastructure for providing the processing facilities, and for the sputtered Nb films.


  1. 1.
    F. Giazotto, J.T. Peltonen, M. Meschke, J.P. Pekola, Nat. Phys. 6, 254 (2010)CrossRefGoogle Scholar
  2. 2.
    P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964)CrossRefADSGoogle Scholar
  3. 3.
    P.G. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin, San Francisco, 1966)zbMATHGoogle Scholar
  4. 4.
    W. Belzig, F.K. Wilhelm, C. Bruder, G. Schön, A.D. Zaikin, Superlatt. Microstruct. 25, 1251 (1999)CrossRefADSGoogle Scholar
  5. 5.
    C.J. Lambert, R. Raimondi, J. Phys. Condens. Matter 10, 901 (1998)CrossRefADSGoogle Scholar
  6. 6.
    B. Pannetier, H. Courtois, J. Low Temp. Phys. 118, 599 (2000)CrossRefADSGoogle Scholar
  7. 7.
    A.I. Buzdin, Rev. Mod. Phys. 77, 935 (2005)CrossRefADSGoogle Scholar
  8. 8.
    W. Belzig, C. Bruder, G. Schön, Phys. Rev. B 54, 9443 (1996)CrossRefADSGoogle Scholar
  9. 9.
    S. Gueron, H. Pothier, Norman O. Birge, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 77, 3025 (1996)CrossRefADSGoogle Scholar
  10. 10.
    H. le Sueur, P. Joyez, H. Pothier, C. Urbina, D. Esteve, Phys. Rev. Lett. 100, 197002 (2008)CrossRefADSGoogle Scholar
  11. 11.
    V.T. Petrashov, V.N. Antonov, P. Delsing, T. Claeson, JETP Lett. 60, 606 (1994)ADSGoogle Scholar
  12. 12.
    V.T. Petrashov, V.N. Antonov, P. Delsing, T. Claeson, Phys. Rev. Lett. 74, 5268 (1995)CrossRefADSGoogle Scholar
  13. 13.
    W. Belzig, R. Shaikhaidarov, V.V. Petrashov, YuV Nazarov, Phys. Rev. B 66, 220505 (2002)CrossRefADSGoogle Scholar
  14. 14.
    F. Zhou, P. Charlat, B. Spivak, B. Pannetier, J. Low Temp. Phys. 110, 841 (1998)CrossRefADSGoogle Scholar
  15. 15.
    J. Clarke, A.I. Braginski (eds.), The SQUID Handbook: Applications of SQUIDs and SQUID Systems, vol. I (Wiley, Wienheim, 2004)Google Scholar
  16. 16.
    M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)Google Scholar
  17. 17.
    K.K. Likharev, Dynamics of Josephson Junctions and Circuits, 1st edn. (Gordon and Breach, Philadelphia, 1986)Google Scholar
  18. 18.
    M.J. Martínez-Pérez, D. Koelle, Phys. Sci. Rev. 2, 8 (2017)Google Scholar
  19. 19.
    C. Granata, A. Vettoliere, Phys. Rep. 614, 1 (2016)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    C.P. Foley, H. Hilgenkamp, Supercond. Sci. Technol. 22, 1 (2009)CrossRefGoogle Scholar
  21. 21.
    L. Hao, J.C. Macfarlane, S.K.H. Lam, C.P. Foley, P. Josephs-Franks, J.C. Gallop, I.E.E.E. Trans, Appl. Supercond. 15, 514 (2005)CrossRefGoogle Scholar
  22. 22.
    L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, P. Joseph-Franks, D. Hutson, J. Chen, I.E.E.E. Trans, Instrum. Meas. 56, 392–395 (2007)CrossRefGoogle Scholar
  23. 23.
    F. Giazotto, F. Taddei, Phys. Rev. B 84, 214502 (2011)CrossRefADSGoogle Scholar
  24. 24.
    M. Meschke, J.T. Peltonen, J.P. Pekola, F. Giazotto, Phys. Rev. B 84, 214514 (2011)CrossRefADSGoogle Scholar
  25. 25.
    R.N. Jabdaraghi, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 104, 082601 (2014)CrossRefADSGoogle Scholar
  26. 26.
    A. Ronzani, C. Altimiras, F. Giazotto, Phys. Rev. Appl. 2, 024005 (2014)CrossRefADSGoogle Scholar
  27. 27.
    R.N. Jabdaraghi, J.T. Peltonen, O.-P. Saira, J.P. Pekola, Appl. Phys. Lett. 108, 042604 (2016)CrossRefADSGoogle Scholar
  28. 28.
    R.N. Jabdaraghi, D.S. Golubev, J.P. Pekola, J.T. Peltonen, Sci. Rep. 7, 8011 (2017)CrossRefADSGoogle Scholar
  29. 29.
    N. Ligato, G. Marchegiani, P. Virtanen, E. Strambini, F. Giazotto, Sci. Rep. 7, 8010 (2017)CrossRefADSGoogle Scholar
  30. 30.
    A. Ronzani, S. D’Ambrosio, R. Virtanen, F. Giazotto, C. Altimiras, Phys. Rev. B 96, 214517 (2017)CrossRefADSGoogle Scholar
  31. 31.
    S. D’Ambrosio, M. Meissner, C. Blanc, A. Ronzani, F. Giazotto, Appl. Phys. Lett. 107, 113110 (2015)CrossRefADSGoogle Scholar
  32. 32.
    G.J. Dolan, Appl. Phys. Lett. 31, 337 (1977)CrossRefADSGoogle Scholar
  33. 33.
    J.P. Pekola, J.P. Kauppinen, Cryogenics 34, 843 (1994)CrossRefADSGoogle Scholar
  34. 34.
    F. Giazotto, T.T. Heikkilä, G. Pepe, P. Helistö, A. Luukanen, J.P. Pekola, Appl. Phys. Lett. 92, 162507 (2008)CrossRefADSGoogle Scholar
  35. 35.
    Y. Blum, A. Tsukernik, M. Karpovski, A. Palevski, Phys. Rev. B 70, 214501 (2004)CrossRefADSGoogle Scholar
  36. 36.
    P. Dubos, H. Courtois, B. Pannetier, F.K. Wilhelm, A.D. Zaikin, G. Schön, Phys. Rev. B 63, 064502 (2001)CrossRefADSGoogle Scholar
  37. 37.
    V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 10, 486 (1963)CrossRefADSGoogle Scholar
  38. 38.
    M. Ternes, W.D. Schneider, J.C. Cuevas, C.P. Lutz, C.F. Hirjibehedin, A.J. Heinrich, Phys. Rev. B 74, 132501 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. N. Jabdaraghi
    • 1
    Email author
  • J. T. Peltonen
    • 1
  • D. S. Golubev
    • 1
  • J. P. Pekola
    • 1
  1. 1.QTF Centre of Excellence, Department of Applied PhysicsAalto UniversityAaltoFinland

Personalised recommendations