Advertisement

Design of Magnetic Shielding and Field Coils for a TES X-ray Microcalorimeter Test Platform

  • Antoine R. MiniussiEmail author
  • Joseph S. Adams
  • Simon R. Bandler
  • James A. Chervenak
  • Aaron M. Datesman
  • William B. Doriese
  • Megan E. Eckart
  • Fred M. Finkbeiner
  • Richard L. Kelley
  • Caroline A. Kilbourne
  • Frederick S. Porter
  • John E. Sadleir
  • Kazuhiro Sakai
  • Stephen J. Smith
  • Nicholas A. Wakeham
  • Edward J. Wassell
  • Henk J. van Weers
  • Wonsik Yoon
Article

Abstract

The performance of transition-edge sensors (TES) and their SQUID multiplexed readouts is very sensitive to ambient magnetic field and its fluctuations. In order to run ground experiments on thousands of X-ray TES microcalorimeters with a small uniform ambient magnetic field (< 1 μT, with a uniformity < 0.1 μT), we need a very low ambient field to be trapped into the superconducting magnetic shields. We have designed a sub-Kelvin test platform to reach these specifications. For this purpose, we modeled a new design for the shielding consisting of a series of different mu-metal and superconducting shields, including a niobium shield at 50 mK, a cryoperm (A4K) shield at 3 K, and a mu-metal shield at 300 K. A magnetic field coil is used to vary the local perpendicular magnetic field over the TES array. To optimize this field, we have studied a number of different field-coil designs and the impact of the different shield geometries, in order to reach the required field uniformity.

Keywords

TES Magnetic field Shielding Coil Cryogenics 

Notes

References

  1. 1.
    K.D. Irwin, G. Hilton, C. Enss, Top. Appl. Phys. (2005).  https://doi.org/10.1007/10933596_3 Google Scholar
  2. 2.
    K.D. Irwin et al., J. Low Temp. Phys. 167(5–6), 588 (2012).  https://doi.org/10.1007/s10909-016-1608-7 ADSCrossRefGoogle Scholar
  3. 3.
    R. den Hartog et al., IEEE Trans. Appl. Superconduct. 21, 4 (2011).  https://doi.org/10.1109/TASC.2010.2101998 CrossRefGoogle Scholar
  4. 4.
    D. Barret et al., Proc. SPIE Int. Soc. Opt. Eng. 9905, 99052F (2016).  https://doi.org/10.1117/12.2232432 Google Scholar
  5. 5.
    K. Nandra et al., arXiv:1306.2307 (2013). arXiv:1306.2307 [astro-ph.HE]
  6. 6.
    A. Bergen et al., Rev. Sci. Inst. 87, 105106 (2016).  https://doi.org/10.1063/1.4962157 ADSCrossRefGoogle Scholar
  7. 7.
    COMSOL Multiphysics, v. 5.3, www.comsol.com, COMSOL AB, Stockholm, Sweden
  8. 8.
    Amumetal A4 K is developed and sold by Amuneal MFG, PhiladelphiaGoogle Scholar
  9. 9.
    S.M. Wasim, N.H. Zebouni, Phys. Rev. 187, 539–548 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Antoine R. Miniussi
    • 1
    • 2
    • 4
    Email author
  • Joseph S. Adams
    • 1
    • 2
    • 4
  • Simon R. Bandler
    • 1
    • 4
  • James A. Chervenak
    • 1
    • 4
  • Aaron M. Datesman
    • 1
    • 3
    • 4
  • William B. Doriese
    • 4
    • 6
  • Megan E. Eckart
    • 1
    • 4
  • Fred M. Finkbeiner
    • 1
    • 3
    • 4
  • Richard L. Kelley
    • 1
    • 4
  • Caroline A. Kilbourne
    • 1
    • 4
  • Frederick S. Porter
    • 1
    • 4
  • John E. Sadleir
    • 1
    • 4
  • Kazuhiro Sakai
    • 1
    • 2
    • 4
  • Stephen J. Smith
    • 1
    • 2
    • 4
  • Nicholas A. Wakeham
    • 1
    • 4
    • 5
  • Edward J. Wassell
    • 1
    • 3
    • 4
  • Henk J. van Weers
    • 4
    • 7
  • Wonsik Yoon
    • 1
    • 4
    • 5
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.CRESST IIUniversity of Maryland Baltimore CountyBaltimoreUSA
  3. 3.SGT, IncGreenbeltUSA
  4. 4.Wyle Information SystemsMcleanUSA
  5. 5.NPPUniversities Space Research AssociationColumbiaUSA
  6. 6.NIST – National Institute of Standards and TechnologyGaithersburgUSA
  7. 7.SRON – Netherlands Institute for Space ResearchUtrechtThe Netherlands

Personalised recommendations