Advertisement

Development of a Sub-mK Continuous Nuclear Demagnetization Refrigerator

  • David SchmoranzerEmail author
  • Rasul Gazizulin
  • Sébastien Triqueneaux
  • Eddy Collin
  • Andrew Fefferman
Article
  • 23 Downloads

Abstract

We present the development of a two-stage PrNi\(_5\) continuous demagnetization refrigerator at the Institut Nel/CNRS and numerical simulations of its performance. The thermal model used in the simulations is discussed in detail including the likely sources of heating. We demonstrate the effects of the critical thermal links including superconducting heat switches as well as the heat conductivity of the PrNi\(_5\), accounting for the dependence of cooling power on the PrNi\(_5\) rod diameter. Our simulations show that if care is taken to minimize the thermal resistance between the nuclear stages, a sample temperature of 1 mK can be maintained under a 20-nW heat load.

Keywords

Ultra-low temperatures Adiabatic nuclear demagnetization Continuous refrigeration techniques PrNi\(_5\) 

Notes

Acknowledgements

We acknowledge support from the ERC StG Grant UNIGLASS No. 714692 and ERC CoG Grant ULT-NEMS No. 647917.

References

  1. 1.
    G.R. Pickett, C. Enss, The European microkelvin platform. Nat. Rev. Mater. 3, 18012 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    O.V. Lounasmaa, Experimental Principles and Methods below 1 K (Academic Press, London, 1974)Google Scholar
  3. 3.
    F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, Berlin, 2007)CrossRefGoogle Scholar
  4. 4.
    D. Schmoranzer, S. Kumar, A. Luck, E. Collin, A. Fefferman, X. Liu, T. Metcalf, G. Jernigan, Submitted to QFS2018 proceedingsGoogle Scholar
  5. 5.
    P. Shirron, E. Canavan, M. DiPirro, J. Francis, M. Jackson, J. Tuttle, T. King, M. Grabowski, Development of a cryogen-free continuous ADR for the constellation-X mission. Cryogenics 44, 581588 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Toda, S. Murakawa, H. Fukuyama, Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications. J. Phys. Conf. Ser. 969, 012093 (2018)CrossRefGoogle Scholar
  7. 7.
    R.M. Mueller, C. Buchal, T. Oversluizen, F. Pobell, Superconducting aluminum heat switch and plated press-contacts for use at ultralow temperatures. Rev. Sci. Instrum. 49, 515 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    F. Blondelle, A. Sultan, E. Collin, H. Godfrin, Electrical conductance of bolted copper joints for cryogenic applications. J. Low Temp. Phys. 175, 877887 (2014)CrossRefGoogle Scholar
  9. 9.
    H.R. Folle, M. Kubota, Ch. Buchal, R.M. Mueller, F. Pobell, Nuclear refrigeration properties of PrNi5. Z. Phys. B Condens. Matter 41, 223–228 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    H.C. Meijer, G.J.C. Bots, H. Postma, The thermal conductivity of PrNi5; electroplating of PrNi5. Physica 107B, 607–608 (1981)Google Scholar
  11. 11.
    J.M. Parpia, W.P. Kirk, P.S. Kobiela, T.L. Rhodes, Z. Olejniczak, G.N. Parker, Optimization procedure for the cooling of liquid 3He by adiabatic demagnetization of praseodymium nickel. Rev. Sci. Instrum. 56(3), 437 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    M. Kubota, H.R. Folle, C. Buchal, R.M. Mueller, F. Pobell, Nuclear magnetic ordering in PrNi5 at 0.4 mK. Phys. Rev. Lett. 45(20), 1812 (1981)ADSGoogle Scholar
  13. 13.
    T. Shigematsu, M. Maeda, M. Takeshita, Y. Fujii, M. Nakamura, M. Yamaguchi, T. Shigi, H. Ishii, in Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference, (1997), p. 621–624Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NéelGrenobleFrance

Personalised recommendations