Advertisement

Journal of Low Temperature Physics

, Volume 194, Issue 5–6, pp 394–403 | Cite as

Disk Resonator Design for Kinetic Inductance Detectors

  • N. ZobristEmail author
  • M. Daal
  • J. Y. Corbin
  • B. Sadoulet
  • B. Mazin
Article
  • 124 Downloads

Abstract

We propose disk resonators for use as kinetic inductance detectors. Benefits and drawbacks of this design are discussed with consideration for potential detector applications. We have conducted electromagnetic simulations of the resonator geometry and will use them to examine the disk resonator properties. We will compare several schemes for coupling these resonators to feed lines and review the effect of a large kinetic inductance on the design equations for the resonant frequency. Additionally, a strategy to reduce the resonator metal volume by meshing is considered, and its effects on the resonator’s current distribution are shown. We find that meshing can significantly alter the resonant frequency of the disk. We conclude by discussing an example disk resonator, gamma-ray microcalorimeter detector design.

Keywords

MKID Disk resonator Kinetic inductance Two-level system noise 

Notes

Acknowledgements

This work was supported by the National Science Foundation, Grant Number PHY-1408597, and a NASA Space and Technology Research Fellowship, Grant Number 80NSSC17K0075.

References

  1. 1.
    J. Zmuidzinas, Superconducting microresonators: physics and applications. Ann. Rev. Condens. Matter Phys. 3, 169–214 (2012).  https://doi.org/10.1146/annurev-conmatphys-020911-125022 CrossRefGoogle Scholar
  2. 2.
    A. Catalano, R. Adam, P. Ade, et al. The NIKA2 commissioning campaign: performance and first results (2016). arXiv:1605.08628
  3. 3.
    S.R. Siegel. Noise performance of the multiwavelength sub/millimeter inductance camera (MUSIC) detectors. J. Instrum. (2015).  https://doi.org/10.1088/1748-0221/10/07/C07016
  4. 4.
    K. O’Brien, B. Mazin, S. McHugh et al., ARCONS: a highly multiplexed superconducting UV-to-near-IR camera. Proc. Int. Astron. Union 7(S285), 385–388 (2012).  https://doi.org/10.1017/S1743921312001159 CrossRefGoogle Scholar
  5. 5.
    S. Meeker, B. Mazin, R. Jensen-Clem, et al., Design and development status of MKID integral field spectrographs for high contrast imaging, in AO4ELT4 Conference Proceedings (2015).  https://doi.org/10.20353/K3T4CP1131701
  6. 6.
    G. Ulbricht, B.A. Mazin, P. Szypryt et al., Highly multiplexible thermal kinetic inductance detectors for X-ray imaging spectroscopy. Appl. Phys. Lett. 106(25), 251103 (2015).  https://doi.org/10.1063/1.4923096 ADSCrossRefGoogle Scholar
  7. 7.
    M. Daal. Kinetic Inductance Detectors for Dark Matter Searches. PhD thesis, UC Berkeley (2015). http://escholarship.org/uc/item/7q85w8vj
  8. 8.
    D.C. Moore, S. Golwala, B. Cornell et al., Phonon mediated microwave kinetic inductance detectors. J. Low Temp. Phys. 167(3–4), 329–334 (2012).  https://doi.org/10.1007/s10909-011-0434-1 ADSCrossRefGoogle Scholar
  9. 9.
    L. Cardani, N. Casali, I. Colantoni et al., High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out. Appl. Phys. Lett. 110(3), 1–6 (2017).  https://doi.org/10.1063/1.4974082 CrossRefGoogle Scholar
  10. 10.
    J. Gao, M. Daal, A. Vayonakis et al., Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. Appl. Phys. Lett. 92(15), 152505 (2008).  https://doi.org/10.1063/1.2906373 ADSCrossRefGoogle Scholar
  11. 11.
    J. Gao, M. Daal, J.M. Martinis et al., A semiempirical model for two-level system noise in superconducting microresonators. Appl. Phys. Lett. 92(21), 2–5 (2008).  https://doi.org/10.1063/1.2937855 CrossRefGoogle Scholar
  12. 12.
    S. Cho, Inductance measurements in YBa\(_{2}\)Cu\(_{3}\)O\(_{2-x}\) thin films. Supercond. Sci. Technol. 10(8), 594–597 (1997).  https://doi.org/10.1088/0953-2048/10/8/012 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    P.J. De Visser, S. Withington, D.J. Goldie, Readout-power heating and hysteretic switching between thermal quasiparticle states in kinetic inductance detectors. J. Appl. Phys. 108(11), 114504 (2010).  https://doi.org/10.1063/1.3517152 ADSCrossRefGoogle Scholar
  14. 14.
    S.E. Thompson, S. Withington, D.J. Goldie, C.N. Thomas, Dynamical behaviour of superconducting microresonators with readout-power heating. Supercond. Sci. Technol. 26(9), 095009 (2013).  https://doi.org/10.1088/0953-2048/26/9/095009 ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Golosovsky, H.J. Snortland, M.R. Beasley, Nonlinear microwave properties of superconducting Nb microstrip resonators. Phys. Rev. B 51(10), 6462–6469 (1995).  https://doi.org/10.1103/PhysRevB.51.6462 ADSCrossRefGoogle Scholar
  16. 16.
    H. Chaloupka, M. Jeck, B. Gurzinski, S. Kolesov, Superconducting planar disk resonators and filters with high power handling capability. Electron. Lett. 32(18), 1735 (1996).  https://doi.org/10.1049/el:19961111 CrossRefGoogle Scholar
  17. 17.
    A. Eriksson, P. Linner, S. Gevorgian, Mode chart of electrically thin parallel-plate circular resonators. IEE Proc. Microw. Antennas Propag. 148(1), 51 (2001).  https://doi.org/10.1049/ip-map:20010216 CrossRefGoogle Scholar
  18. 18.
    S. Ramo, J.R. Whinnery, T. Van Duzer. Fields and Waves in Communication Electronics, 3rd edn. (Wiley, 1994). ISBN: 0-471-58551-3Google Scholar
  19. 19.
    J. Mateu, C. Collado, J.M. O’Callaghan, Nonlinear analysis of disk resonators. Application to material characterization and filter design. IEEE Trans. Appl. Supercond. 11(1), 135–138 (2001).  https://doi.org/10.1109/TASC.2001.979860 ADSCrossRefGoogle Scholar
  20. 20.
    J. Gao, The physics of superconducting microwave resonators. PhD thesis, California Institute of Technology (2008). http://resolver.caltech.edu/CaltechETD:etd-06092008-235549
  21. 21.
    Sonnet Software Inc. Sonnet Suites (2017). http://www.sonnetsoftware.com/. Accessed 12 Dec 2018
  22. 22.
    P. Szypryt, B.A. Mazin, G. Ulbricht et al., High quality factor platinum silicide microwave kinetic inductance detectors. Appl. Phys. Lett. 109, 151102 (2016).  https://doi.org/10.1063/1.4964665 ADSCrossRefGoogle Scholar
  23. 23.
    C. Song, M.P. Defeo, K. Yu, B.L.T. Plourde, Reducing microwave loss in superconducting resonators due to trapped vortices. Appl. Phys. Lett. 95, 232501 (2009).  https://doi.org/10.1063/1.3271523 ADSCrossRefGoogle Scholar
  24. 24.
    C. Song, T. Heitmann, M. DeFeo et al., Microwave response of vortices in superconducting thin films of Re and Al. Phys. Rev. B 79(17), 174512 (2009).  https://doi.org/10.1103/PhysRevB.79.174512 ADSCrossRefGoogle Scholar
  25. 25.
    S. Doyle, P. Mauskopf, J. Naylon et al., Lumped element kinetic inductance detectors. J. Low Temp. Phys. 151(1–2 PART 1), 530–536 (2008).  https://doi.org/10.1007/s10909-007-9685-2 ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Bennett, R.D. Horansky, D.R. Schmidt et al., A high resolution gamma-ray spectrometer based on superconducting microcalorimeters. Rev. Sci. Instrum. 83(9), 093113 (2012).  https://doi.org/10.1063/1.4754630 ADSCrossRefGoogle Scholar
  27. 27.
    J.H. Hubbell, S.M. Seltzer. X-ray mass attenuation coefficients, in NIST Standard Reference Database 126, 2004 edn. (2004).  https://doi.org/10.18434/T4D01F. Last visited September 2018
  28. 28.
    C.A. Bryant, P.H. Keesom, Low-temperature specific heat of indium and tin. Phys. Rev. 123, 491–499 (1961).  https://doi.org/10.1103/PhysRev.123.491 ADSCrossRefGoogle Scholar
  29. 29.
    R. Winkler, A.S. Hoover, M.W. Rabin et al., 256-Pixel microcalorimeter array for high-resolution \(\gamma \)-ray spectroscopy of mixed-actinide materials. Nucl. Instrum. Meth. Phys. Res. A 770, 203–210 (2015).  https://doi.org/10.1016/j.nima.2014.09.049 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsU.C. Santa BarbaraSanta BarbaraUSA
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations