The Effect of Remnant Vortices in He II on Multiple Modesof a Micro-electromechanical Resonator
Article
First Online:
- 18 Downloads
Abstract
A micro-electromechanical plate resonator suspended 2 \(\upmu \)m above a substrate was immersed in \(^4\)He at 14 mK at saturated vapor pressure. At these temperatures, four vibrational modes of the device are observed. The corresponding motion of these modes is identified by comparing the observed modes with computer simulations. Owing to its large surface area and small mass, the resonator is sensitive to remnant vortices. The behavior of the modes is studied in the presence of remnant vortices and also in the presence of fully developed turbulence generated by a quartz tuning fork.
Keywords
Vortex Quantum turbulence Superfluid \(^4\)He He II MEMSNotes
References
- 1.C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, PNAS 111, 4647 (2014)ADSCrossRefGoogle Scholar
- 2.W. Guo, M.L. Mantia, D.P. Lathrop, S.W. Van Sciver, PNAS 111, 4653 (2014)CrossRefGoogle Scholar
- 3.W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002)ADSCrossRefGoogle Scholar
- 4.M. Blažková, M. Človenčko, E. Gažo, L. Skrbek, P. Skyba, J. Low Temp. Phys. 148, 305 (2007)ADSCrossRefGoogle Scholar
- 5.D.I. Bradley, M.J. Fear, S.N. Fisher, A.M. Guénault, R.P. Haley, C.R. Lawson, P.V.E. McClintock, G.R. Pickett, R. Schanen, V. Tsepelin, L.A. Wheatland, J. Low Temp. Phys. 156, 116 (2009)ADSCrossRefGoogle Scholar
- 6.D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, K.L. Zaki, J. Low Temp. Phys. 138, 493 (2005)ADSCrossRefGoogle Scholar
- 7.H. Yano, A. Handa, H. Nakagawa, K. Obara, O. Ishikawa, T. Hata, M. Nakagawa, J. Low Temp. Phys. 138, 561 (2005)ADSCrossRefGoogle Scholar
- 8.J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 4, 566 (1995)CrossRefGoogle Scholar
- 9.S.I. Davis, P.C. Hendry, P.V.E. McClintock, Physica B 280, 43 (2000)ADSCrossRefGoogle Scholar
- 10.P. Zheng, W.G. Jiang, C.S. Barquist, Y. Lee, H.B. Chan, Phys. Rev. Lett. 117, 195301 (2016)ADSCrossRefGoogle Scholar
- 11.P. Zheng, W.G. Jiang, C.S. Barquist, Y. Lee, H.B. Chan, Phys. Rev. Lett. 118, 0654301 (2017)Google Scholar
- 12.P. Zheng, W.G. Jiang, C.S. Barquist, Y. Lee, H.B. Chan, J. Low Temp. Phys. 187, 309 (2017)ADSCrossRefGoogle Scholar
- 13.C.S. Barquist, P. Zheng, W.G. Jiang, Y. Lee, Y.K. Yoon, T. Schumann, J. Nogan, M. Lilly, J. Low Temp. Phys. 183, 307 (2016)ADSCrossRefGoogle Scholar
- 14.P. Zheng, W.G. Jiang, C.S. Barquist, Y. Lee, H.B. Chan, J. Low Temp. Phys. 183, 313 (2016)ADSCrossRefGoogle Scholar
- 15.C.S. Barquist, J. Bauer, T. Edmonds, P. Zheng, W.G. Jiang, M. González, Y. Lee, H.B. Chan, J. Phys. Conf. Ser. 568, 032003 (2014)CrossRefGoogle Scholar
- 16.M. González, P. Zheng, E. Garcell, Y. Lee, H.B. Chan, Rev. Sci. Instrum. 84, 025003 (2013)ADSCrossRefGoogle Scholar
- 17.D.I. Bradley, P. Crookston, S.N. Fisher, A. Ganshin, A.M. Guénault, R.P. Haley, M.J. Jackson, G.R. Pickett, R. Schanen, V. Tseplin, J. Low Temp. Phys. 157, 476 (2009)ADSCrossRefGoogle Scholar
- 18.A.H. Nayfeh, D.T. Mook, Nonlinear Oscillators (Wiley-VCH, Weinheim, 2004), pp. 162–165Google Scholar
- 19.E. Collin, M. Defoot, K. Lulla, T. Moutonet, J.-S. Heron, O. Bourgeois, YuM Bunkov, H. Godfrin, Rev. Sci. Instrum. 83, 045005 (2012)ADSCrossRefGoogle Scholar
- 20.A.M. Elshurafa, K. Khirallah, H.H. Tawfik, A. Emira, A.K.S.A. Aziz, S.M. Sedky, J. Microelectromech. Syst. 20, 943 (2011)CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019