Skip to main content
Log in

Entrainment in Superfluid Neutron-Star Crusts: Hydrodynamic Description and Microscopic Origin

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In spite of the absence of viscous drag, the neutron superfluid permeating the inner crust of a neutron star cannot flow freely and is entrained by the nuclear lattice similarly to laboratory superfluid atomic gases in optical lattices. The role of entrainment on the neutron superfluid dynamics is reviewed. For this purpose, a minimal hydrodynamical model of superfluidity in neutron-star crusts is presented. This model relies on a fully 4-dimensionally covariant action principle. The equivalence of this formulation with the more traditional approach is demonstrated. In addition, the different treatments of entrainment in terms of dynamical effective masses or superfluid density are clarified. The nuclear energy density functional theory employed for the calculations of all the necessary microscopic inputs is also reviewed, focusing on superfluid properties. In particular, the microscopic origin of entrainment and the different methods to estimate its importance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Since gravity is neglected here, the total momentum covectors \(\pi ^{_{\mathrm{X}}}_{\, \nu }\) reduce to the material momentum covectors \(\mu ^{_{\mathrm{X}}}_{\, \nu }\), as can be seen from Eq. (152) of Ref. [28] after setting the Newtonian gravitational potential \(\phi =0\).

  2. Because of the local electric charge neutrality condition \(n_{ p}=n_{ e}\), where \(n_{ e}\) is the electron number density, the electron chemical potential is included in \(\mu ^p\).

  3. Let us recall that the chemical potential \(\mu ^{p}\) includes the contribution of electrons.

  4. These equations are also called Bogoliubov–de Gennes equations in condensed matter physics.

  5. The pairing contributions to \(h_q\) are typically very small, and therefore often neglected.

  6. In principle, one should also solve the density functional theory equations for electrons. But in the extreme environment of neutron stars it is usually a very good approximation to treat electrons as an ideal relativistic Fermi gas.

References

  1. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1: Equation of State and Structure (Springer, New York, 2007)

    Book  Google Scholar 

  2. N. Chamel, J. Astrophys. Astron. 38, 43 (2017)

    Article  ADS  Google Scholar 

  3. N. Chamel, in Proceedings of The Modern Physics of Compact Stars 2015, PoS(MPCS2015)013. https://pos.sissa.it/262/013/pdf

  4. J.S. Tsakadze, S.J. Tsakadze, J. Low Temp. Phys. 39, 649 (1980)

    Article  ADS  Google Scholar 

  5. P.W. Anderson, N. Itoh, Nature 256, 25 (1975)

    Article  ADS  Google Scholar 

  6. D. Pines, M.A. Alpar, Nature 316, 27 (1985)

    Article  ADS  Google Scholar 

  7. N. Chamel, Nucl. Phys. A 747, 109 (2005)

    Article  ADS  Google Scholar 

  8. N. Chamel, Nucl. Phys. A 773, 263 (2006)

    Article  ADS  Google Scholar 

  9. N. Chamel, Phys. Rev. C 85, 035801 (2012)

    Article  ADS  Google Scholar 

  10. A. Eggington, J. Low Temp. Phys. 28, 1 (1977)

    Article  ADS  Google Scholar 

  11. L.P. Pitaevskii, Phys. Uspekhi 49, 333 (2006)

    Article  ADS  Google Scholar 

  12. G. Watanabe, G. Orso, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 78, 063619 (2008)

    Article  ADS  Google Scholar 

  13. N. Andersson, K. Glampedakis, W.C.G. Ho, C.M. Espinoza, Phys. Rev. Lett. 109, 241103 (2012)

    Article  ADS  Google Scholar 

  14. N. Chamel, Phys. Rev. Lett. 110, 011101 (2013). (2013)

    Article  ADS  Google Scholar 

  15. T. Delsate, N. Chamel, N. Gürlebeck, A.F. Fantina, J.M. Pearson, C. Ducoin, Phys. Rev. D 94, 023008 (2016)

    Article  ADS  Google Scholar 

  16. A.D. Sedrakian, D.M. Sedrakian, J.M. Cordes, Y. Terzian, Astrophys. J. 447, 324 (1995)

    Article  ADS  Google Scholar 

  17. A. Sedrakian, J.M. Cordes, Mon. Not. R. Astron. Soc. 307, 365 (1999)

    Article  ADS  Google Scholar 

  18. E. Gügercinoğlu, M.A. Alpar, Astrophys. J. 788, L11 (2014)

    Article  ADS  Google Scholar 

  19. W.C.G. Ho, C.M. Espinoza, D. Antonopoulou, N. Andersson, Sci. Adv. 1, e1500578 (2015)

    Article  ADS  Google Scholar 

  20. P.M. Pizzochero, M. Antonelli, B. Haskell, S. Seveso, Nat. Astron. 1, 0134 (2017)

    Article  ADS  Google Scholar 

  21. B. Carter, Relativistic Fluid Dynamics (Springer, Berlin, 1989), p. 1

    Book  Google Scholar 

  22. C.J. Pethick, N. Chamel, S. Reddy, Prog. Theor. Phys. Suppl. 186, 9 (2010)

    Article  ADS  Google Scholar 

  23. D. Kobyakov, C.J. Pethick, Phys. Rev. C 87, 055803 (2013)

    Article  ADS  Google Scholar 

  24. B. Carter, in Lecture Notes Physics, vol. 578, ed. by D. Blaschke, N.K. Glendenning, A. Sedrakian (Springer, 2001), p. 54

  25. E. Gourgoulhon, EAS Publ. 21, 43 (2006)

    Article  Google Scholar 

  26. N. Andersson, G.L. Comer, Living Rev. Relativ. 10, 1 (2007). https://doi.org/10.12942/lrr-2007-1

  27. B. Carter, I.M. Khalatnikov, Rev. Math. Phys. 6, 277 (1994)

    Article  MathSciNet  Google Scholar 

  28. B. Carter, N. Chamel, Int. J. Mod. Phys. D 13, 291 (2004)

    Article  ADS  Google Scholar 

  29. B. Carter, N. Chamel, Int. J. Mod. Phys. D 14, 717 (2005)

    Article  ADS  Google Scholar 

  30. N. Chamel, Mon. Not. R. Astron. Soc. 388, 737 (2008)

    Article  ADS  Google Scholar 

  31. N. Chamel, Int. J. Mod. Phys. D 24, 1550018 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. B. Carter, N. Chamel, Int. J. Mod. Phys. D 14, 749 (2005)

    Article  ADS  Google Scholar 

  33. B. Carter, E. Chachoua, Int. J. Mod. Phys. D 15, 1329 (2006)

    Article  ADS  Google Scholar 

  34. B. Carter, E. Chachoua, N. Chamel, Gen. Relativ. Gravit. 38, 83 (2006)

    Article  ADS  Google Scholar 

  35. B. Carter, L. Samuelsson, Class. Quantum Gravity 23, 5367 (2006)

    Article  ADS  Google Scholar 

  36. B. Carter, N. Chamel, P. Haensel, Int. J. Mod. Phys. D 15, 777 (2006)

    Article  ADS  Google Scholar 

  37. A.F. Andreev, E.P. Bashkin, Sov. J. Exper. Theor. Phys. 42, 164 (1976)

    ADS  Google Scholar 

  38. N. Chamel, P. Haensel, Phys. Rev. C 73, 045802 (2006)

    Article  ADS  Google Scholar 

  39. N. Chamel, D. Page, S. Reddy, Phys. Rev. C 87, 035803 (2013)

    Article  ADS  Google Scholar 

  40. N. Chamel, D. Page, S. Reddy, J. Phys. Conf. Ser. 665, 012065 (2016)

    Article  Google Scholar 

  41. T. Duguet, Lecture Notes Phys, vol. 879 (Springer, Berlin, 2014), pp. 293–350

  42. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984)

    Article  ADS  Google Scholar 

  43. J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Dechargé, Phys. Rev. C 53, 2809 (1996)

    Article  ADS  Google Scholar 

  44. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  45. N. Chamel, Phys. Rev. C 82, 061307(R) (2010)

    Article  ADS  Google Scholar 

  46. N. Chamel, Phys. Rev. C 82, 014313 (2010)

    Article  ADS  Google Scholar 

  47. T. Duguet, K. Bennaceur, P. Bonche, nucl-th/0508054, in Proceedings of the YITP Workshop on New Developments in Nuclear Self-Consistent Mean-Field Theories, Kyoto, 2005 (YITP-W-05-01), p. B20

  48. N. Chamel, S. Goriely, J.M. Pearson, Nucl. Phys. A 812, 72 (2008)

    Article  ADS  Google Scholar 

  49. W.N. Mathews Jr., Z. Phys. B 24, 371 (1976)

    Article  ADS  Google Scholar 

  50. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  51. B.K. Harrison, J.A. Wheeler, Onzième Conseil de Physique Solvay (Stoops, Brussels, 1958)

    Google Scholar 

  52. B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravitation Theory and Gravitational Collapse (The University of Chicago Press, Chicago, 1965)

    Google Scholar 

  53. N. Chamel, A.F. Fantina, Phys. Rev. C 94, 065802 (2016)

    Article  ADS  Google Scholar 

  54. R.N. Wolf et al., Phys. Rev. Lett. 110, 041101 (2013)

    Article  ADS  Google Scholar 

  55. J.M. Pearson, S. Goriely, N. Chamel, Phys. Rev. C 83, 065810 (2011)

    Article  ADS  Google Scholar 

  56. S. Kreim, M. Hempel, D. Lunney, J. Schaffner-Bielich, Int. J. Mass Spectrom. 349–350, 63 (2013)

    Article  Google Scholar 

  57. B.K. Sharma, M. Centelles, X. Viñas, M. Baldo, G.F. Burgio, Astron. Astrophys. 584, A103 (2015)

    Article  ADS  Google Scholar 

  58. R. Utama, J. Piekarewicz, H.B. Prosper, Phys. Rev. C 93, 014311 (2016)

    Article  ADS  Google Scholar 

  59. N. Chamel, A.F. Fantina, J.M. Pearson, S. Goriely, in EPJ Web Conference, vol. 137 (2017), p. 09001

  60. J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1973)

    Article  ADS  Google Scholar 

  61. J. Margueron, N. Sandulescu, in Neutron Star Crust, ed. by C. Bertulani, J. Piekarewicz (Nova Science Publishers, New York, 2012), p. 65

    Google Scholar 

  62. E.P. Wigner, F. Seitz, Phys. Rev. 43, 804 (1933)

    Article  ADS  Google Scholar 

  63. P. Bonche, D. Vautherin, Nucl. Phys. A 372, 496 (1981)

    Article  ADS  Google Scholar 

  64. A. Pastore, M. Shelley, C. A. Diget, in Proceedings of 26th International Nuclear Physics Conference, PoS(INPC2016)145. https://pos.sissa.it/281/145/pdf

  65. N. Chamel, S. Naimi, E. Khan, J. Margueron, Phys. Rev. C 75, 055806 (2007)

    Article  ADS  Google Scholar 

  66. N. Chamel, in Exotic States of Nuclear Matter, Proceedings of the International Symposium EXOCT07, ed. by U. Lombardo, M. Baldo, F. Burgio, H.-J. Schulze (World Scientific Publishing, 2008), p. 91

  67. J. Margueron, N. Van Giai, N. Sandulescu, in Exotic States of Nuclear Matter, Proceedings of the International Symposium EXOCT07, ed. by U. Lombardo, M. Baldo, F. Burgio, H.-J. Schulze (World Scientific Publishing, 2008), p. 362

  68. P. Magierski, P.-H. Heenen, Phys. Rev. C 65, 045804 (2002)

    Article  ADS  Google Scholar 

  69. P. Gögelein, H. Müther, Phys. Rev. C 76, 024312 (2007)

    Article  ADS  Google Scholar 

  70. F.J. Fattoyev, C.J. Horowitz, B. Schuetrumpf, Phys. Rev. C 95, 055804 (2017)

    Article  ADS  Google Scholar 

  71. A.K. Dutta, M. Onsi, J.M. Pearson, Phys. Rev. C 69, 052801 (R) (2004)

    Article  ADS  Google Scholar 

  72. M. Onsi, A.K. Dutta, H. Chatri, S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 77, 065805 (2008)

    Article  ADS  Google Scholar 

  73. J.M. Pearson, N. Chamel, S. Goriely, C. Ducoin, Phys. Rev. C 85, 065803 (2012)

    Article  ADS  Google Scholar 

  74. J.M. Pearson, N. Chamel, A. Pastore, S. Goriely, Phys. Rev. C 91, 018801 (2015)

    Article  ADS  Google Scholar 

  75. J. Bartel, M. Brack, M. Durand, Nucl. Phys. A 445, 263 (1985)

    Article  ADS  Google Scholar 

  76. M. Brack, C. Guet, H.-B. Håkansson, Phys. Rep. 123, 275 (1985)

    Article  ADS  Google Scholar 

  77. K. Oyamatsu, M. Yamada, Nucl. Phys. A 578, 181 (1994)

    Article  ADS  Google Scholar 

  78. S. Goriely, M. Samyn, J.M. Pearson, Phys. Rev. C 75, 064312 (2007)

    Article  ADS  Google Scholar 

  79. N. Chamel, J.M. Pearson, A.F. Fantina, C. Ducoin, S. Goriely, A. Pastore, Acta Phys. Pol. B 46, 349 (2015)

    Article  ADS  Google Scholar 

  80. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  81. G. Colò, N.V. Giai, J. Meyer, K. Bennaceur, P. Bonche, Phys. Rev. C 70, 024307 (2004)

    Article  ADS  Google Scholar 

  82. F. Grill, C. Providência, S.S. Avancini, Phys. Rev. C 85, 055808 (2012)

    Article  ADS  Google Scholar 

  83. J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

    Article  ADS  Google Scholar 

  84. B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981)

    Article  ADS  Google Scholar 

  85. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  86. A. Gezerlis, J. Carlson, Phys. Rev. C 81, 025803 (2010)

    Article  ADS  Google Scholar 

  87. K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010)

    Article  ADS  Google Scholar 

  88. I. Tews, T. Kruger, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 110, 032504 (2013)

    Article  ADS  Google Scholar 

  89. L.G. Cao, U. Lombardo, P. Schuck, Phys. Rev. C 74, 064301 (2006)

    Article  ADS  Google Scholar 

  90. A. Gezerlis, C.J. Pethick, A. Schwenk, in Novel Superfluids, vol. 2, ed. by K.H. Bennemann, J.B. Ketterson (Oxford University Press, Oxford, 2014). Chapter 22

    Google Scholar 

  91. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  92. L.G. Cao, U. Lombardo, C.W. Shen, Phys. Rev. C 73, 014313 (2006)

    Article  ADS  Google Scholar 

  93. N. Chamel, S. Goriely, J.M. Pearson, in Fifty Years of Nuclear BCS: Pairing in Finite Systems, ed. by R.A. Broglia, V. Zelevinsky (World Scientific Publishing Co. Pte. Ltd, Singapore, 2013), pp. 284–296

    Chapter  Google Scholar 

  94. N. Chamel, S. Goriely, J.M. Pearson, M. Onsi, Phys. Rev. C 81, 045804 (2010)

    Article  ADS  Google Scholar 

  95. R.I. Epstein, Astrophys. J. 333, 880 (1988)

    Article  ADS  Google Scholar 

  96. A. Sedrakian, Astrophys. Space Sci. 236, 267 (1996)

    Article  ADS  Google Scholar 

  97. P. Magierski, A. Bulgac, Acta Phys. Pol. B 35, 1203 (2004)

    ADS  Google Scholar 

  98. N. Martin, M. Urban, Phys. Rev. C 94, 065801 (2016)

    Article  ADS  Google Scholar 

  99. B. Carter, N. Chamel, P. Haensel, Nucl. Phys. A 748, 675 (2005)

    Article  ADS  Google Scholar 

  100. B. Carter, N. Chamel, P. Haensel, Nucl. Phys. A 759, 441 (2005)

    Article  ADS  Google Scholar 

  101. A. Zeilinger, C.G. Shull, M.A. Horne, K.D. Finkelstein, Phys. Rev. Lett. 57, 3089 (1986)

    Article  ADS  Google Scholar 

  102. K. Raum, M. Koellner, A. Zeilinger, M. Arif, R. Gahler, Phys. Rev. Lett. 74, 2859 (1995)

    Article  ADS  Google Scholar 

  103. N. Chamel, J. Margueron, E. Khan, Phys. Rev. C 79, 012801 (2009)

    Article  ADS  Google Scholar 

  104. G. Watanabe, C.J. Pethick, Phys. Rev. Lett. 119, 062701 (2017)

  105. N. Chamel, P. Haensel, Living Rev. Relativ. 11, 10 (2008). https://doi.org/10.12942/lrr-2008-10

  106. G. Watanabe, T. Maruyama, in Neutron Star Crust, ed. by C. Bertulani, J. Piekarewicz (Nova Science Publishers, Hauppauge, 2012), p. 23

    Google Scholar 

  107. A. Kokalj, Comput. Mater. Sci. 28, 155 (2003). http://www.xcrysden.org/

Download references

Acknowledgements

This work was supported by the Fonds de la Recherche Scientifique—FNRS (Belgium) under Grant No. CDR J.0187.16, and the European Cooperation in Science and Technology (COST) action MP1304 NewCompStar. This work was completed at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chamel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamel, N. Entrainment in Superfluid Neutron-Star Crusts: Hydrodynamic Description and Microscopic Origin. J Low Temp Phys 189, 328–360 (2017). https://doi.org/10.1007/s10909-017-1815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1815-x

Keywords

Navigation