Skip to main content
Log in

Composite Boson Description of a Low-Density Gas of Excitons

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Ground-state properties of a fermionic Coulomb gas are calculated using the fixed-node diffusion Monte Carlo method. The validity of the composite boson description is tested for different densities. We extract the exciton–exciton s-wave scattering length by solving the four-body problem in a harmonic trap and mapping the energy to that of two trapped bosons. The equation of state is consistent with the Bogoliubov theory for composite bosons interacting with the obtained s-wave scattering length. The perturbative expansion at low density has contributions physically coming from (a) exciton binding energy, (b) mean-field Gross–Pitaevskii interaction between excitons, and (c) quantum depletion of the excitonic condensate (Lee–Huang–Yang terms for composite bosons). In addition, for low densities we find a good agreement with the Bogoliubov bosonic theory for the condensate fraction of excitons. The equation of state in the opposite limit of large density is found to be well described by the perturbative theory including (a) mixture of two ideal Fermi gases and (b) exchange energy. We find that for low densities both energetic and coherent properties are correctly described by the picture of composite bosons (excitons).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y.E. Lozovik, V.I. Yudson, Sov. Phys. JETP 44, 389 (1976)

    ADS  Google Scholar 

  2. Y.E. Lozovik, V.N. Nishanov, Solid State Phys. 18, 1905 (1976)

    Google Scholar 

  3. Y.E. Lozovik, V.I. Yudson, Phys. A 93, 493 (1978)

    Article  Google Scholar 

  4. Y.E. Lozovik, O.L. Berman, JETP Lett. 64, 573 (1996)

    Article  ADS  Google Scholar 

  5. Y.E. Lozovik, O.L. Berman, JETP 84, 1027 (1997)

    Article  ADS  Google Scholar 

  6. E.P. Gross, Nuovo Cimento 20, 454 (1961)

    Article  Google Scholar 

  7. L.P. Pitaevskii, Z. Eksp, Teor. Fiz. 40, 646 (1961)

    Google Scholar 

  8. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2 (Pergamon Press, Oxford, 1980)

    Google Scholar 

  9. M. Combescot, S.Y. Shiau, Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics (Oxford University Press, Oxford, 2015)

    Book  Google Scholar 

  10. M. Combescot, O. Betbeder-Matibet, R. Combescot, Phys. Rev. B 75, 174305 (2007)

    Article  ADS  Google Scholar 

  11. L.V. Keldysh, A.N. Kozlov, Sov. Phys. JETP 27, 521 (1968)

    ADS  Google Scholar 

  12. P.H. Acioli, D.M. Ceperley, Phys. Rev. B 54, 17199 (1996)

    Article  ADS  Google Scholar 

  13. S.D. Kenny, G. Rajagopal, R.J. Needs, W.K. Leung, M.J. Godfrey, A.J. Williamson, W.M.C. Foulkes, Phys. Rev. Lett. 77, 1099 (1996)

    Article  ADS  Google Scholar 

  14. X. Zhu, M.S. Hybertsen, P.B. Littlewood, Phys. Rev. B 54, 13575 (1996)

    Article  ADS  Google Scholar 

  15. S. De Palo, F. Rapisarda, G. Senatore, Phys. Rev. Lett. 88, 206401 (2002)

    Article  ADS  Google Scholar 

  16. G.G. Spink, P. López Ríos, N.D. Drummond, R.J. Needs, Phys. Rev. B 94, 041410 (2016)

    Article  ADS  Google Scholar 

  17. J.H. Oh, K.J. Chang, Phys. Rev. B 54, 4948 (1996)

    Article  ADS  Google Scholar 

  18. W.R. Magro, D.M. Ceperley, C. Pierleoni, B. Bernu, Phys. Rev. Lett. 76, 1240 (1996)

    Article  ADS  Google Scholar 

  19. M. Bauer, J. Keeling, M.M. Parish, P. López Ríos, P.B. Littlewood, Phys. Rev. B 87, 035302 (2013)

    Article  ADS  Google Scholar 

  20. J. Boronat, J. Casulleras, Phys. Rev. B 49, 8920 (1994)

    Article  ADS  Google Scholar 

  21. P.J. Reynolds, D.M. Ceperley, B.J. Alder, W.A.L. Jr, J. Chem. Phys. 77(11), 5593 (1982)

    Article  ADS  Google Scholar 

  22. B.L. Hammond, W.A.L. Jr, P.J. Reynolds, Monte Carlo Methods In Ab Initio Quantum Chemistry (Exposicion) (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  23. G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004)

    Article  ADS  Google Scholar 

  24. G.E. Astrakharchik, S. Giorgini, J. Boronat, Phys. Rev. B 86, 174518 (2012)

    Article  ADS  Google Scholar 

  25. S.W. de Leeuw, J.W. Perram, E.R. Smith, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 373(1752), 27 (1980)

    Article  ADS  Google Scholar 

  26. O. Osychenko, G. Astrakharchik, J. Boronat, Mol. Phys. 110(4), 227 (2012)

    Article  ADS  Google Scholar 

  27. L.D. Landau, L.M. Lifshitz, Quantum Mechanics, Third Edition: Non-Relativistic Theory (Volume 3) (Butterworth-Heinemann, Oxford, 1981)

    Google Scholar 

  28. K. Kanjilal, D. Blume, Phys. Rev. A 78, 040703 (2008)

    Article  ADS  Google Scholar 

  29. D. Blume, Rep. Prog. Phys. 75(4), 046401 (2012)

    Article  ADS  Google Scholar 

  30. W.H. Press, Numerical Recipes (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  31. T. Busch, B.G. Englert, K. Rzazewski, M. Wilkens, Found. Phys. 28(4), 549 (1998)

    Article  Google Scholar 

  32. J. Shumway, D.M.J. Ceperley, Phys. IV Fr. 10, Pr5 (2000)

    Google Scholar 

  33. J. Shumway, D.M. Ceperley, Phys. Rev. B 63, 165209 (2001)

    Article  ADS  Google Scholar 

  34. J. Shumway, D. Ceperley, Solid State Commun. 134(12), 19 (2005)

    Article  ADS  Google Scholar 

  35. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford University Press, Oxford, 2016)

    Book  MATH  Google Scholar 

  36. K. Huang, C. Yang, Phys. Rev. 105, 767 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  37. T.D. Lee, C.N. Yang, Phys. Rev. 105, 1119 (1957)

    Article  ADS  Google Scholar 

  38. S. Giorgini, J. Boronat, J. Casulleras, Phys. Rev. A 60, 5129 (1999)

    Article  ADS  Google Scholar 

  39. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, Boston, 1971)

    Google Scholar 

  40. G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

Download references

Acknowledgements

Pierbiagio Pieri and Alexander Fetter are acknowledged for useful discussions about the expansion of the equation of state for a weakly interacting Fermi gas. We acknowledge partial financial support from the MICINN (Spain) Grant No. FIS2014-56257-C2-1-P. Yu. E. Lozovik was supported by RFBR. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (FI-2017-2-0011). The authors gratefully acknowledge the Gauss Centre for Supercomputing 3.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Astrakharchik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golomedov, A.E., Lozovik, Y.E., Astrakharchik, G.E. et al. Composite Boson Description of a Low-Density Gas of Excitons. J Low Temp Phys 189, 300–311 (2017). https://doi.org/10.1007/s10909-017-1814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1814-y

Keywords

Navigation