Journal of Low Temperature Physics

, Volume 189, Issue 5–6, pp 451–469 | Cite as

Fermions in Two Dimensions: Scattering and Many-Body Properties

  • Alexander Galea
  • Tash Zielinski
  • Stefano Gandolfi
  • Alexandros GezerlisEmail author


Ultracold atomic Fermi gases in two dimensions (2D) are an increasingly popular topic of research. The interaction strength between spin-up and spin-down particles in two-component Fermi gases can be tuned in experiments, allowing for a strongly interacting regime where the gas properties are yet to be fully understood. We have probed this regime for 2D Fermi gases by performing T = 0 ab initio diffusion Monte Carlo calculations. The many-body dynamics are largely dependent on the two-body interactions; therefore, we start with an in-depth look at scattering theory in 2D. We show the partial-wave expansion and its relation to the scattering length and effective range. Then, we discuss our numerical methods for determining these scattering parameters. We close out this discussion by illustrating the details of bound states in 2D. Transitioning to the many-body system, we use variationally optimized wave functions to calculate ground-state properties of the gas over a range of interaction strengths. We show results for the energy per particle and parametrize an equation of state. We then proceed to determine the chemical potential for the strongly interacting gas.


Cold atoms Fermions Two-dimensional systems Scattering Quantum Monte Carlo 



The authors would like to thank G. E. Astrakharchik, T. Enss, J. Thywissen, and E. Vitali for helpful discussions. This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation (CFI), the Early Researcher Award (ERA) program of the Ontario Ministry of Research, Innovation and Science, the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC52-06NA25396, and the LANL LDRD program. Computational resources were provided by SHARCNET, NERSC, and Los Alamos Open Supercomputing. The authors would like to acknowledge the ECT* for its warm hospitality during the “Superfluidity and Pairing Phenomena” workshop in March 2017, where part of this work was carried out.


  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J. Levinsen, M.M. Parish, Annu. Rev. Cold At. Mol. 3, 1 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Carlson, S.Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    S.Y. Chang, V.R. Pandharipande, J. Carlson, K.E. Schmidt, Phys. Rev. A 70, 043602 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M.M. Forbes, S. Gandolfi, A. Gezerlis, Phys. Rev. Lett. 106, 235303 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    S. Gandolfi, K.E. Schmidt, J. Carlson, Phys. Rev. A 83, 041601 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M.M. Forbes, S. Gandolfi, A. Gezerlis, Phys. Rev. A 86, 053603 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Gezerlis, J. Carlson, Phys. Rev. C 77, 032801 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J. Carlson, S. Gandolfi, A. Gezerlis, Prog. Theor. Exp. Phys. 2012, 01A209 (2012). doi: 10.1093/ptep/pts031 CrossRefGoogle Scholar
  12. 12.
    M. Stein, X.-G. Huang, A. Sedrakian, J.W. Clark, Phys. Rev. C 86, 062801(R) (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Gandolfi, A. Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    M. Buraczynski, A. Gezerlis, Phys. Rev. Lett. 116, 152501 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    D. Lacroix, A. Boulet, M. Grasso, C.-J. Yang, arXiv:1704.08454
  16. 16.
    K. Günter, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, Phys. Rev. Lett. 95, 230401 (2005)CrossRefGoogle Scholar
  17. 17.
    X.-J. Liu, H. Hu, P.D. Drummond, Phys. Rev. B 82, 054524 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    K. Martiyanov, V. Makhalov, A. Turlapov, Phys. Rev. Lett. 105, 030404 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Valiente, N.T. Zinner, K. Molmer, Phys. Rev. A 84, 063626 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, M. Köhl, Phys. Rev. Lett. 106, 105301 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M. Feld, B. Fröhlich, E. Vogt, M. Koschorreck, M. Köhl, Nature 480, 75–78 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A.A. Orel, P. Dyke, M. Delehaye, C.J. Vale, H. Hu, New J. Phys. 13, 113032 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    V. Makhalov, K. Martiyanov, A. Turlapov, Phys. Rev. Lett. 112, 045301 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Bauer, M.M. Parish, T. Enss, Phys. Rev. Lett. 112, 135302 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    B.C. Mulkerin, K. Fenech, P. Dyke, C.J. Vale, X.-J. Liu, H. Hu, Phys. Rev. A 92, 063636 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    L. He, H. Lü, G. Cao, H. Hu, X.-J. Liu, Phys. Rev. A 92, 023620 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M. Klawunn, Phys. Lett. A 380, 2650 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    E.R. Anderson, J.E. Drut, Phys. Rev. Lett. 115, 115301 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    L. He, Ann. Phys. (N. Y.) 373, 470 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    W. Ong, C.-Y. Cheng, I. Arakelyan, J.E. Thomas, Phys. Rev. Lett. 114, 110403 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    P.A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D. Kedar, M. Neidig, M.G. Ries, A.N. Wenz, G. Zürn, S. Jochim, Phys. Rev. Lett. 115, 010401 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    M.G. Ries, A.N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P.A. Murthy, M. Neidig, T. Lompe, S. Jochim, Phys. Rev. Lett. 114, 230401 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    K. Fenech, P. Dyke, T. Peppler, M.G. Lingham, S. Hoinka, H. Hu, C.J. Vale, Phys. Rev. Lett. 116, 045302 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    I. Boettcher, L. Bayha, D. Kedar, P.A. Murthy, M. Neidig, M.G. Ries, A.N. Wenz, G. Zürn, S. Jochim, T. Enss, Phys. Rev. Lett. 116, 045303 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    L. Rammelmüller, W.J. Porter, J.E. Drut, Phys. Rev. A 93, 033639 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    K. Martiyanov, T. Barmashova, V. Makhalov, A. Turlapov, Phys. Rev. A 93, 063622 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    C. Cheng, J. Kangara, I. Arakelyan, J.E. Thomas, Phys. Rev. A 94, 031606 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    C. Luciuk, S. Smale, F. Böttcher, H. Sharum, B.A. Olsen, S. Trotzky, T. Enss, J.H. Thywissen, Phys. Rev. Lett. 118, 130405 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, H. Moritz, arXiv:1704.06315
  40. 40.
    K. Miyake, Prog. Theor. Phys. 69, 1794 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. Lett. 62, 981 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. B 41, 327 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    G. Bertaina, S. Giorgini, Phys. Rev. Lett. 106, 110403 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    H. Shi, S. Chiesa, S. Zhang, Phys. Rev. A 92, 033603 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    A. Galea, H. Dawkins, S. Gandolfi, A. Gezerlis, Phys. Rev. A 93, 023602 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    S.K. Adhikari, Am. J. Phys. 54, 362 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    N.N. Khuri, A. Martin, J.-M. Richard, T.T. Wu, J. Math. Phys. 50, 072105 (2009)ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    S.K. Adhikari, W.G. Gibson, T.K. Lim, J. Chem. Phys. 85, 5580 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    L. Madeira, S. Gandolfi, K.E. Schmidt, Phys. Rev. A 95, 053603 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    J.R. Engelbrecht, M. Randeria, L. Zhang, Phys. Rev. B 45, 10135 (1992)ADSCrossRefGoogle Scholar
  51. 51.
    D.S. Petrov, M.A. Baranov, G.V. Shlyapnikov, Phys. Rev. A 67, 031601(R) (2003)ADSCrossRefGoogle Scholar
  52. 52.
    T. Enss, Private communication (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GuelphGuelphCanada
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations