Journal of Low Temperature Physics

, Volume 189, Issue 3–4, pp 204–216 | Cite as

Thermal Relaxation in Titanium Nanowires: Signatures of Inelastic Electron-Boundary Scattering in Heat Transfer

  • Teemu Elo
  • Pasi Lähteenmäki
  • Dmitri Golubev
  • Alexander Savin
  • Konstantin Arutyunov
  • Pertti Hakonen
Article
  • 147 Downloads

Abstract

We have employed noise thermometry for investigations of thermal relaxation between the electrons and the substrate in nanowires patterned from 40-nm-thick titanium film on top of silicon wafers covered by a native oxide. By controlling the electronic temperature \(T_\mathrm{e}\) by Joule heating at the base temperature of a dilution refrigerator, we probe the electron–phonon coupling and the thermal boundary resistance at temperatures \(T_\mathrm{e}= 0.5\)–3 K. Using a regular \(T^5\)-dependent electron–phonon coupling of clean metals and a \(T^4\)-dependent interfacial heat flow, we deduce a small contribution for the direct energy transfer from the titanium electrons to the substrate phonons due to inelastic electron-boundary scattering.

Keywords

Thermal contact Thermal relaxation Electron-phonon coupling Kapitza resistance Electronic Kapitza conductance Shot noise thermometry Titanium 

Notes

Acknowledgements

This work was supported by the Academy of Finland (Grant Nos. 284594, LTQ CoE), and by the European Research Council (Grant No. 670743). This research made use of the OtaNano Low Temperature Laboratory infrastructure of Aalto University, that is part of the European Microkelvin Platform. Konstantin Arutyunov acknowledges the support of the Russian Science Foundation Grant No. 16-12-10521.

References

  1. 1.
    O.V. Lounasmaa, Experimental Principles and Methods Below 1 K (Academic Press, New York, 1974)Google Scholar
  2. 2.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    M.L. Huberman, A.W. Overhauser, Phys. Rev. B 50, 2865 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Sergeev, Phys. Rev. B 58, R10199 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    G.D. Mahan, Phys. Rev. B 79, 075408 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T. Low, V. Perebeinos, R. Kim, M. Freitag, P. Avouris, Phys. Rev. B 86, 045413 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, M.E. Gershenson, Nat. Nanotechnol. 3, 496 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    B.S. Karasik, A.V. Sergeev, D.E. Prober, IEEE Trans. Terahertz Sci. Technol. 1, 97 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    C.Y. Wu, W.B. Jian, J.J. Lin, Phys. Rev. B 57, 11232 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    S.Y. Hsu, P.J. Sheng, J.J. Lin, Phys. Rev. B 60, 3940 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    A.J. Manninen, J.K. Suoknuuti, M.M. Leivo, J.P. Pekola, Appl. Phys. Lett. 74, 3020 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    M.E. Gershenson, D. Gong, T. Sato, B.S. Karasik, A.V. Sergeev, Appl. Phys. Lett. 79, 2049 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    R. Horn, J.P. Harrison, J. Low Temp. Phys. 133, 291 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    D. Fukuda, R.M.T. Damayanthi, A. Yoshizawa, N. Zen, H. Takahashi, K. Amemiya, M. Ohkubo, I.E.E.E. Trans, Appl. Supercond. 17, 259 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    B.S. Karasik, D. Olaya, J. Wei, S. Pereverzev, M.E. Gershenson, J.H. Kawamura, W.R. McGrath, A.V. Sergeev, I.E.E.E. Trans, Appl. Supercond. 17, 293 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    P. Day, H.G. Leduc, C.D. Dowell, R.A. Lee, A. Turner, J. Zmuidzinas, J. Low Temp. Phys. 151, 477 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    B.S. Karasik, S.V. Pereverzev, D. Olaya, J. Wei, M.E. Gershenson, A.V. Sergeev, I.E.E.E. Trans, Appl. Supercond. 19, 532 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J.T. Karvonen, L.J. Taskinen, I.J. Maasilta, Phys. Rev. B 72, 012302 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    F. Wu, P. Virtanen, S. Andresen, B. Plaçais, P.J. Hakonen, Appl. Phys. Lett. 97, 262115 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J. Chaste, E. Pallecchi, P. Morfin, G. Feve, T. Kontos, J.M. Berroir, P. Hakonen, B. Plaçais, Appl. Phys. Lett. 96, 192103 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    D.F. Santavicca, J.D. Chudow, D.E. Prober, M.S. Purewal, P. Kim, Nano Lett. 10, 4538 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Y.M. Blanter, M. Büttiker, Prog. Reports Phys. 336, 1 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    B.A. Sanborn, P.B. Allen, D.A. Papaconstantopoulos, Phys. Rev. B 40, 6037 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    R. Tarkiainen, M. Ahlskog, P. Hakonen, M. Paalanen, J. Phys. Soc. Jpn. 72, 100 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    K.C. Fong, K.C. Schwab, Phys. Rev. X 2, 31006 (2012)Google Scholar
  26. 26.
    A. Laitinen, M. Oksanen, A. Fay, D. Cox, M. Tomi, P. Virtanen, P.J. Hakonen, Nano Lett. 14, 3009 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    C.B. McKitterick, H. Vora, X. Du, B.S. Karasik, D.E. Prober, J. Low Temp. Phys. 176, 291 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    W.E. Bron, W. Grill, Phys. Rev. B 16, 5303 (1977)ADSCrossRefGoogle Scholar
  29. 29.
    M.L. Roukes, M.R. Freeman, R.S. Germain, R.C. Richardson, M.B. Ketchen, Phys. Rev. Lett. 55, 422 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B 49, 5942 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    G. Bergmann, W. Wei, Y. Zou, R.M. Mueller, Phys. Rev. B 41, 7386 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    M.I. Kaganov, I.M. Lifshitz, I.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)Google Scholar
  33. 33.
    P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    A. Sergeev, V. Mitin, Phys. Rev. B 61, 6041 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    J.T. Karvonen, I.J. Maasilta, Phys. Rev. Lett. 99, 145503 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    E.M. Gershenzon, M.E. Gershenzon, G.N. Go‘ltsman, A.M. Lyul‘kin, A.D. Semenov, A.V. Sergeev, Sov. Phys. JETP 70, 505 (1990)Google Scholar
  37. 37.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, 2005)MATHGoogle Scholar
  38. 38.
    J.F. DiTusa, K. Lin, M. Park, M.S. Isaacson, J.M. Parpia, Phys. Rev. Lett. 68, 1156 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    G.L. Pollack, Rev. Mod. Phys. 41, 48 (1969)ADSCrossRefGoogle Scholar
  40. 40.
    E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)ADSCrossRefGoogle Scholar
  41. 41.
    L. Taskinen, Thermal Properties of Mesoscopic Wires and Tunnel Junctions. Ph.D. thesis, University of Jyväskylä, 2006Google Scholar
  42. 42.
    Y. Bilotsky, P.M. Tomchuk, Surf. Sci. 602, 383 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    M. Zgirski, K.-P. Riikonen, V. Tuboltsev, P. Jalkanen, T.T. Hongisto, K.Y. Arutyunov, Nanotechnology 19, 055301 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    T. Nieminen, P. Lähteenmäki, Z. Tan, D. Cox, P.J. Hakonen, Rev. Sci. Instrum. 87, 114706 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    F.C. Wellstood, C. Urbina, J. Clarke, Appl. Phys. Lett. 54, 2599 (1989)ADSCrossRefGoogle Scholar
  46. 46.
    P.M. Echternach, M.R. Thoman, C.M. Gould, H.M. Bozler, Phys. Rev. B. 46, 10339 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    K.Y. Arutyunov, D.S. Golubev, A.D. Zaikin, Phys. Rep. 464, 1 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    J.S. Lehtinen, T. Sajavaara, K.Y. Arutyunov, M.Y. Presnjakov, A.L. Vasiliev, Phys. Rev. B 85, 094508 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    J.S. Lehtinen, K. Zakharov, K.Y. Arutyunov, Phys. Rev. Lett. 109, 187001 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Low Temperature Laboratory, Department of Applied PhysicsAalto UniversityEspooFinland
  2. 2.National Research University Higher School of Economics, Moscow Institute of Electronics and MathematicsMoscowRussia
  3. 3.Kapitza Institute for Physical ProblemsRussian Academy of ScienceMoscowRussia

Personalised recommendations