Skip to main content
Log in

Composition of Nuclear Matter with Light Clusters and Bose–Einstein Condensation of \(\alpha \) Particles

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Bose–Einstein condensation of \(\alpha \) particles in the multicomponent environment of dilute, warm nuclear matter is studied. We consider the cases of matter composed of light clusters with mass numbers \(A\le 4\) and matter that in addition to these clusters contains \({}^{56}{\hbox {Fe}}\) nuclei. We apply the quasiparticle gas model which treats clusters as bound states with infinite lifetime and binding energies independent of temperature and density. We show that the \(\alpha \) particles can form a condensate at low temperature \(T\le 2\) MeV in such matter in the first case. When the \({}^{56}{\hbox {Fe}}\) nucleus is added to the composition, the cluster abundances are strongly modified at low temperatures, with an important implication that the \(\alpha \) condensation at these temperatures is suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  2. H.A. Bethe, Nucl. Phys. A 606, 95 (1996)

    Article  ADS  Google Scholar 

  3. H.T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, B. Müller, Phys. Rep. 442, 38 (2007)

    Article  ADS  Google Scholar 

  4. M. Liebendörfer, T. Fischer, C. Fröhlich, F.K. Thielemann, S. Whitehouse, J. Phys. G Nucl. Phys. 35(1), 014056 (2008)

    Article  ADS  Google Scholar 

  5. A. Burrows, L. Dessart, C.D. Ott, E. Livne, Phys. Rep. 442, 23 (2007)

    Article  ADS  Google Scholar 

  6. M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89(1), 015007 (2017)

    Article  ADS  Google Scholar 

  7. J.M. Lattimer, F. Douglas Swesty, Nucl. Phys. A 535, 331 (1991)

    Article  ADS  Google Scholar 

  8. H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A 637, 435 (1998)

    Article  ADS  Google Scholar 

  9. K. Sumiyoshi, G. Röpke, Phys. Rev. C 77(5), 055804 (2008)

    Article  ADS  Google Scholar 

  10. S. Heckel, P.P. Schneider, A. Sedrakian, Phys. Rev. C 80(1), 015805 (2009)

    Article  ADS  Google Scholar 

  11. S.R. Souza, A.W. Steiner, W.G. Lynch, R. Donangelo, M.A. Famiano, ApJ 707, 1495 (2009)

    Article  ADS  Google Scholar 

  12. A.S. Botvina, I.N. Mishustin, Nucl. Phys. A 843, 98 (2010)

    Article  ADS  Google Scholar 

  13. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81(1), 015803 (2010)

    Article  ADS  Google Scholar 

  14. M. Hempel, J. Schaffner-Bielich, S. Typel, G. Röpke, Phys. Rev. C 84(5), 055804 (2011)

    Article  ADS  Google Scholar 

  15. M. Oertel, A.F. Fantina, J. Novak, Phys. Rev. C 85(5), 055806 (2012)

    Article  ADS  Google Scholar 

  16. M. Hempel, T. Fischer, J. Schaffner-Bielich, M. Liebendörfer, ApJ 748, 70 (2012)

    Article  ADS  Google Scholar 

  17. N. Buyukcizmeci, A.S. Botvina, I.N. Mishustin, ApJ 789, 33 (2014)

    Article  ADS  Google Scholar 

  18. S. Burrello, F. Gulminelli, F. Aymard, M. Colonna, A.R. Raduta, Phys. Rev. C 92(5), 055804 (2015)

    Article  ADS  Google Scholar 

  19. H. Pais, S. Chiacchiera, C. Providência, Phys. Rev. C 91(5), 055801 (2015)

    Article  ADS  Google Scholar 

  20. M. Oertel, F. Gulminelli, C. Providência, A.R. Raduta, Eur. Phys. J. A 52, 50 (2016)

    Article  ADS  Google Scholar 

  21. S. Furusawa, I. Mishustin, Phys. Rev. C 95(3), 035802 (2017)

    Article  ADS  Google Scholar 

  22. C. Ducoin, J. Margueron, P. Chomaz, Nucl. Phys. A 809, 30 (2008)

    Article  ADS  Google Scholar 

  23. S. Shlomo, G. Röpke, J.B. Natowitz et al., Phys. Rev. C 79(3), 034604 (2009)

    Article  ADS  Google Scholar 

  24. G. Röpke, Phys. Rev. C 79(1), 014002 (2009)

    Article  ADS  Google Scholar 

  25. J.B. Natowitz, G. Röpke, S. Typel et al., Phys. Rev. Lett. 104(20), 202501 (2010)

    Article  ADS  Google Scholar 

  26. K. Hagel, J.B. Natowitz, G. Röpke, Eur. Phys. J. A 50, 39 (2014)

    Article  ADS  Google Scholar 

  27. Ş. Mişicu, I.N. Mishustin, W. Greiner, Mod. Phys. Lett. A 32, 1750010 (2017)

    ADS  Google Scholar 

  28. G. Peilert, J. Randrup, H. Stöcker, W. Greiner, Phys. Lett. B 260, 271 (1991)

    Article  ADS  Google Scholar 

  29. G. Peilert, H. Stöcker, W. Greiner, Rep. Prog. Phys. 57, 533 (1994)

    Article  ADS  Google Scholar 

  30. N.U. Bastian, P. Batyuk, D. Blaschke et al., Eur. Phys. J. A 52, 244 (2016)

    Article  ADS  Google Scholar 

  31. M. Beyer, G. Röpke, A. Sedrakian, Phys. Lett. B 376, 7 (1996)

    Article  ADS  Google Scholar 

  32. A. Sedrakian, G. Röpke, Ann. Phys. 266, 524 (1998)

    Article  ADS  Google Scholar 

  33. A. Sedrakian, J.W. Clark, Phys. Rev. C 73(3), 035803 (2006)

    Article  ADS  Google Scholar 

  34. C.J. Horowitz, A. Schwenk, Nucl. Phys. A 776, 55 (2006)

    Article  ADS  Google Scholar 

  35. M. Ferreira, C. Providência, Phys. Rev. C 85(5), 055811 (2012)

    Article  ADS  Google Scholar 

  36. M. Stein, X.G. Huang, A. Sedrakian, J.W. Clark, Phys. Rev. C 86(6), 062801 (2012)

    Article  ADS  Google Scholar 

  37. M. Stein, A. Sedrakian, X.G. Huang, J.W. Clark, Phys. Rev. C 90(6), 065804 (2014)

    Article  ADS  Google Scholar 

  38. M. Stein, A. Sedrakian, X.G. Huang, J.W. Clark, G. Röpke, J. Phys. Conf. Ser. 496, 012008 (2014)

    Article  Google Scholar 

  39. G. Röpke, N.U. Bastian, D. Blaschke et al., Nucl. Phys. A 897, 70 (2013)

    Article  ADS  Google Scholar 

  40. G. Röpke, Phys. Rev. C 92(5), 054001 (2015)

    Article  ADS  Google Scholar 

  41. F. Gulminelli, A.R. Raduta, Phys. Rev. C 92(5), 055803 (2015)

    Article  ADS  Google Scholar 

  42. J.W. Clark, A. Sedrakian, M. Stein et al., J. Phys. Conf. Ser. 702, 012012 (2016)

    Article  Google Scholar 

  43. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87(19), 192501 (2001)

    Article  ADS  Google Scholar 

  44. Y. Suzuki, M. Takahashi, Phys. Rev. C 65(6), 064318 (2002)

    Article  ADS  Google Scholar 

  45. J.W. Clark, T.P. Wang, Ann. Phys. 40, 127 (1966)

    Article  ADS  Google Scholar 

  46. G.P. Mueller, J.W. Clark, Nucl. Phys. A 155, 561 (1970)

    Article  ADS  Google Scholar 

  47. G. Röpke, A. Schnell, P. Schuck, P. Nozières, Phys. Rev. Lett. 80, 3177 (1998)

    Article  ADS  Google Scholar 

  48. G. Röpke, P. Schuck, Mod. Phys. Lett. A 21, 2513 (2006)

    Article  ADS  Google Scholar 

  49. D. Lee, Phys. Rev. Lett. 98(18), 182501 (2007)

    Article  ADS  Google Scholar 

  50. A. Sedrakian, H. Müther, P. Schuck, Nucl. Phys. A 766, 97 (2006)

    Article  ADS  Google Scholar 

  51. P. Schuck, Y. Funaki, H. Horiuchi et al., Prog. Part. Nucl. Phys. 59, 285 (2007)

    Article  ADS  Google Scholar 

  52. Y. Funaki, H. Horiuchi, G. Röpke et al., Phys. Rev. C 77(6), 064312 (2008)

    Article  ADS  Google Scholar 

  53. F. Carstoiu, Ş. Mişicu, Phys. Lett. B 682, 33 (2009)

    Article  ADS  Google Scholar 

  54. T. Sogo, G. Röpke, P. Schuck, Phys. Rev. C 82(3), 034322 (2010)

    Article  ADS  Google Scholar 

  55. T. Yamada, Y. Funaki, H. Horiuchi et al., Lecture Notes in Physics, vol. 848 (Springer, Berlin, 2012), p. 229

    Google Scholar 

  56. L. M. Satarov, M. I. Gorenstein, A. Motornenko, et al., Arxiv eprint: arXiv:1704.08039 (2017)

  57. T. Fischer, G. Martínez-Pinedo, M. Hempel et al., Eur. Phys. J. Web Conf. 109, 06002 (2016)

    Article  Google Scholar 

  58. A. Harutyunyan, A. Sedrakian, Phys. Rev. C 94(2), 025805 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank John Clark, Eckhard Krotscheck, Peter Schuck, Horst Stöcker and Stefan Typel for useful discussions. X.-H. W. and S.-B. W. acknowledge the hospitality of Goethe University, Frankfurt am Main, where this project was carried out and Nankai University for the support through the International Exchange Foundation. A. S. is supported by the Deutsche Forschungsgemeinschaft (Grant No. SE 1836/3-2) and by the NewCompStar COST Action MP1304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Sedrakian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XH., Wang, SB., Sedrakian, A. et al. Composition of Nuclear Matter with Light Clusters and Bose–Einstein Condensation of \(\alpha \) Particles. J Low Temp Phys 189, 133–146 (2017). https://doi.org/10.1007/s10909-017-1795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1795-x

Keywords

Navigation